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Introduction

Who Is He?

Einstein in 1947

Albert Einstein, physicist, 1879-1955
1905: Discovered special relativity.

1915: Discovered general relativity.

Awarded Nobel prize in 1921.

(1905: Discovery of the photoelectric effect.)

Photo by O. J. Turner. From the U.S. Library of Congress
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Introduction

Why Am I Here?

Image of black hole from the movie
Interstellar (Paramount).

Theory of relativity:

Revolutionised modern physics.

Involved advanced maths.

Goal: Introduce maths behind:

1 Special relativity

2 General relativity
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Special Relativity Postulates and Definitions

Einstein’s Postulates

(A. Einstein, 1905) Postulates of special relativity:∗

1 The laws of physics are the same in all inertial frames of reference.

2 The speed of light in vacuum has the same value in all inertial frames of reference.

Postulates ⇒ strange physical consequences

Two observers moving at different velocities will:

1 Perceive different events to be “at the same time”.

2 Measure different lengths for the same object.

Q. What is the mathematical explanation? Image from clipartall.com

∗ Quoted from Nobelprize.org.
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Special Relativity Postulates and Definitions

Minkowski’s Contribution

(Hermann Minkowski, 1907):

Mathematical formulation of special relativity.

In terms of geometry.

Minkowski died soon after, in 1909.

But his geometric viewpoint eventually led to ...

... Einstein’s theory of general relativity.
H. Minkowski (1864–1909)

Photo from www.spacetimesociety.org.
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Special Relativity Postulates and Definitions

Spacetime

Classical physics—separate notions of:

(3-d) space R3: contains points p = (x , y , z).

(1-d) time R: contains real numbers t.

Relativity—combined notion of spacetime.

Notions of space and time cannot be separated.

(4-d) spacetime R4: contains events P = (t, x , y , z).

Event P: “a point in space at a given time”.

Observer: curve in spacetime (worldline).

x,y,z

t

My worldline (yellow) in spacetime.
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Special Relativity Postulates and Definitions

Classical Length and Distance

Consider two points in space:

p = (px , py , pz), q = (qx , qy , qz).

~pq = q − p: vector from p to q.

|q − p|: distance from p to q.

Squared distance from p to q:

|q − p|2 = (qx − px)
2 + (qy − py )

2 + (qx − px)
2.

p

q

q−p

(Green) 3-vector from p to q.
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Special Relativity Postulates and Definitions

Relativistic “Length” and “Distance”

Consider two events in spacetime:

p = (pt , px , py , pz), q = (qt , qx , qy , qz).

Now define “squared distance” from p to q by

‖q − p‖2
m = −(qt − pt)

2 + (qx − px)
2

+ (qy − py )
2 + (qx − px)

2.

Similar to previous squared distance...

... but flip the sign in the t-component!

p

q

q−p

(Green) 4-vector from p to q.
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Special Relativity Postulates and Definitions

And... the Dot Product

Dot product in space: for 3-vectors ~u = (ux , uy , uz) and ~v = (vx , vy , vz):

~u · ~v = uxvx + uyvy + uzvz .

Captures lengths and angles.

Generates (the usual) geometry on 3-dimensional Euclidean space.

Spacetime product: for 4-vectors ~u = (ut , ux , uy , uz), ~v = (vt , vx , vy , vz):

m(~u, ~v) = −utvt + uxvx + uyvy + uzvz .

m(~u, ~u) is the “weird squared length” of ~u.
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Special Relativity Postulates and Definitions

Minkowski Geometry

Weird product ⇒ weird geometry on spacetime R4

Called Minkowski geometry.

Formally, described by the Minkowski metric:

m = −dt2 + dx2 + dy 2 + dz2.

(Here, we assumed units with speed of light c = 1.)

Mathematically, we take this geometric viewpoint:

Special relativity ⇔ Minkowski geometry.
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Special Relativity Postulates and Definitions

Causal Character I

m(~u, ~u) can now be positive, negative, or zero!

Each case has its own interpretation.

Image by Stib. From en.wikipedia.org.

(1) ~u is spacelike: m(~u, ~u) > 0

Points from origin to outside light cone.

Represents spatial direction.

Measures (squared) length/distance.

(2) ~u is null: m(~u, ~u) = 0

Lies on light cone.

Represents light ray.
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Special Relativity Postulates and Definitions

Causal Character II

(3) ~u is timelike: m(~u, ~u) < 0

Points from origin to inside light cone.

Directions for observer worldlines.

Measures (squared) time elapsed.

Light rays are null lines.

Bottom image: white ray.

Observers are timelike curves.

Bottom image: yellow curve.

An observer can never travel faster than the
speed of light! :(
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Special Relativity Consequences

Relativity

Minkowski geometry is weird.

Leads to interesting physical consequences.

Many things cannot be measured absolutely:

Examples: elapsed time, length, energy-momentum.

Only makes sense relative to an observer.

Image source unknown.
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Special Relativity Consequences

Inertial Frames

Consider inertial observers A, B.

Moving with constant velocities.

Frame of reference (t, x , y , z) about A:

x = y = z = 0 along A.

A stationary.

B moving relative to A.

Frame of reference (t̄, x̄ , ȳ , z̄) about B:

x̄ = ȳ = z̄ = 0 along B.

B stationary.

A moving relative to B.

A:x=y=z=0 B:x̄=ȳ=z̄=0

A:x=y=z=0 B:x̄=ȳ=z̄=0
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Special Relativity Consequences

Simultaneity I

Observers moving at different velocities see
different events as “at the same time.”

Consider event A0 on A’s worldline.

What A sees as simultaneous to A0 is t = C ...

...i.e., space (m-)perpendicular to A at A0.

To A, events A0 and B0 are simultaneous.

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0
t=C

B0

Arick Shao (QMUL) Maths Behind Relativity Maths Taster Day 15 / 32



Special Relativity Consequences

Simultaneity II

But B sees differently!

What B sees as simultaneous to B0 is t̄ = C̄ ...

...i.e., space (m-)perpendicular to B at B0.

But remember: this geometry is weird!

m-product is quite different.

t̄ = C̄ does not hit A0.

To B, events A0 and B0 not simultaneous!

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0
t=C

B0

t̄=C̄

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0

t=C

B0
t̄=C̄
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Special Relativity Consequences

Length Contraction I

Observers moving at different velocities perceive lengths differently.

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0
t=C

B0

t̄=C̄

Shaded region represents rod.

A stationary with respect to rod.

B moving with respect to rod.

Both A and B measure length of rod.

A: length of green bolded segment.

B: length of red bolded segment.
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Special Relativity Consequences

Length Contraction II

Note: A and B measure different lengths!

Q. Who measures the longer length?

(Hint: It’s a trick question.)

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0
t=C

B0

t̄=C̄

B’s measurement consists of:

A’s measurement...

... + timelike component, ...

... which has opposite sign!

B measures shorter length than A.

Image from clipartkid.com
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Special Relativity Consequences

Time Dilation

Clocks moving at different velocities observed to tick at different speeds.

A:x=y=z=0 B:x̄=ȳ=z̄=0

A0
t=c

B0

O

Both A and B carry a clock.

Clocks synchronised at O.

A measures both clocks at t = C .

Q. What will A see?

A measures less time elapsed on B’s
clock than A’s clock.
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Special Relativity Consequences

Twin Paradox I

Twin paradox: classic thought experiment from special relativity.

Consider twins, A and B.

A goes to sleep for a long time.

B flies off in a rocketship.

B eventually flies back to A.

Q. Who ages more? A or B?

Arick Shao (QMUL) Maths Behind Relativity Maths Taster Day 20 / 32



Special Relativity Consequences

Twin Paradox II

Times elapsed for A and B:

A: (m-)length of red segment.

B: (m-)length of green segment.

B-segment is shorter than A-segment.

When B returns to A...

... A will have aged more than B.

Two different curves joining two events will
have different lengths.
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Special Relativity Consequences

Twin Paradox III

OK, so why was this a paradox?

Consider B’s frame of reference:

By same reasoning as before, shouldn’t B
have aged more than A?!

Only the first argument is correct:

Lengths of A’s and B’s curves are independent
of frames of reference.

B’s frame of reference is not inertial, so the
spacetime geometry looks quite different from
B’s point of view.
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General Relativity Postulates and Definitions

Classical Gravity

Problem: special relativity does not include gravity.

Newtonian gravity: attractive force between two particles.

Not compatible with special relativity.

Image from Astronomy Notes
astronomynotes.com/gravappl/s3.htm
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General Relativity Postulates and Definitions

Geometry and Gravity

(Einstein, 1915) General relativity

Revolutionary view of gravity.

Not modeled as a force...

... but as curvature of spacetime.

Simplified viewpoint (image):

Object introduces gravity...

... by bending the spacetime itself.

Image by Johnstone on en.wikipedia.org.
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General Relativity Postulates and Definitions

Curved Spacetimes

Setting of special relativity:

Minkowski spacetime R4.

Has strange geometry, but still flat.

Setting of general relativity:

Curved spacetimes M.

Gravity manifested in the geometry of M.

Spacetime: formally modeled as Lorentzian manifold.

Curved 4-dimensional object.

1 timelike (negative) direction, 3 spacelike (positive) directions.
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General Relativity Postulates and Definitions

Geodesics and Light

Geodesics: analogues in curved spacetimes of lines.

Light rays modeled by null geodesics.

General relativity predicts light should bend.

Confirmed by Eddington in 1919.

Studied positions of stars passing near the sun during solar eclipse.

Image from frigg.physastro.mnsu.edu/~eskridge/

astr101/kauf24_5.JPG.
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General Relativity Postulates and Definitions

The Einstein Field Equations

Q. How are gravity and matter related?

A. They are coupled together via the Einstein field equations:

Rµν −
1

2
Rgµν +Λgµν = Tµν.

Left-hand side: gravitational content

Related to curvature of spacetime.

Λ: cosmological constant

Right-hand side: matter content

T : stress-energy tensor associated with matter fields.
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General Relativity Consequences

Solving the Einstein Equations

Question

Q. What do we do with the Einstein field equations?

The Einstein equations can be viewed as partial differential equations.

Equations containing unknown functions and their derivatives.

Given initial conditions, we can (in theory) solve the Einstein field
equations for the spacetime (i.e., universe) itself!

Roughly, if we know the state of the universe “at a given time”, then we can (in
theory) predict the past and future!

Of course, in practice, doing this is really, really hard. :(
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General Relativity Consequences

The Big Bang Singularity

To simplify, assume spacetime is:

Homogeneous (“looks the same everywhere”)

Isotropic (“same in all directions”)

Solve Einstein equations backwards.

(Coupled to “dust” matter.)⇒ Friedmann–Lemâıtre–Robertson–Walker
(FLRW) spacetimes (1920s, 1930s).

After finite elapsed time, universe “shrinks down to a point”.

Early model of big bang singularity.

Image from ScienceBlogs. (scienceblogs.com/startswithabang/2010/04/05/did-the-universe-start-from-a/)
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General Relativity Consequences

Other Bad Things

Solving the Einstein equations forward:

Sometimes, gravity (curvature) can become extremely strong in a region.

The spacetime can have a black hole:

Once light passes a boundary into this region (event horizon)...

... it can no longer escape this region.

The spacetime can also collapse with a singularity:

Spacetime geometry collapses prematurely.

An observer can, after finite elapsed time, ...

... reach the singularity and no longer exist.
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General Relativity Consequences

An Application

Q. What practical things come from relativity?

One example is GPS (global positioning system).

GPS used to determine your location:

Receives signals from multiple satellites.

Compares time difference between signals.

For GPS to be precise enough to be useful (within ∼ 10 metres):

Need to account for relativistic effects.

Special relativity: orbiting satellites moving with respect to earth.

General relativity: satellites experience less gravity than on earth.
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The End

Thank You!

Thank you for your attention!
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