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9 Soluble and nilpotent groups

9.1 Soluble groups

There are several ways to recognise when a finite group is soluble. Recall that the de-
rived group or commutator subgroup G' of G is the subgroup generated by all commu-
tators [g,h] = g~ 'h~gh for g,h € G. It is a normal subgroup of G with the properties
that G/G' is abelian, and if N is any normal subgroup of G such that G/N is abelian,
then G’ < N. Inductively we define G for r € N by G©) = G and GU+1) = (G
for r > 0.

Note that, if G = G+ then GY) = GU) for all j > i.

Theorem 9.1 For the finite group G, the following properties are equivalent:
(a) There is a chain of subgroups
G=Gy>G >G> >G,1 > G, ={l}

such that G; < G;_1 and G;_1/G; is cyclic of prime order for i = 1,2,...,r (in
other words, all the composition factors of G are cyclic of prime order);

(b) There is a chain of subgroups
G=Hy>Hj >Hy> - >H, >H,={1}
such that H; < G and H;_1 /H; is abelian fori=1,2,....s;

(¢c) there exists r such that G") = {1}.



Proof (c) implies (b): If G") = {1}, then the subgroups H; = G) satisfy the condi-
tions of (b).

(b) implies (a): Suppose that we have a chain of subgroups as in (b). Now if A is a
finite abelian group, then A has a composition series with cyclic composition factors
of prime order. (The proof is by induction. Working from the bottom up, let H; = {1}
and H,_; the subgroup generated by an element of prime order; using the inductive
property, choose a composition series for A/H;_ 1, and use the Correspondence Theo-
rem to lift them to a composition series of A containing H_1.)

Now choose a composition series in each abelian quotient, and lift each to a part
of a composition series between G;_; and G;.

(a) implies (c): We use the fact that, if G/N is abelian, then G’ < N. If a composi-
tion series with prime cyclic factor groups exists as in (a), then by an easy induction,
the ith term G in the derived series is contained in G;; so G") ={1}.

The derlved length or soluble length of the soluble group G is the minimum r such
that G(") = {1}. Note that a non-trivial finite group is abelian if and only if it is soluble
with derived length 1.

Theorem 9.2  (a) Subgroups, quotient groups, and direct products of soluble groups
are soluble.

(b) If G has a normal subgroup N such that N and G/N are soluble, then G is
soluble.

Proof (a) If H < G then all commutators of elements of H belong to G', and so
H' < G'. By induction, H) < GY for all i. So, if G\") = {1}, then H"") = {1}.

If N < G, then [Ng,Nh] Nlg,h],so (G/N) = G’N/N. By induction, (G/N)(®) =

GUN/N for all i. So, if G") = {1}, then (G/N)\") = {1}.

In G x H, we have [(gl,hl) (gz,hz)] ([gl,gz],[hl,hz]) for all g;,g> € G and
hy,hy € H So (G x H) G' xH'. By induction (G x H)Y) =G x HO for all i.
So, if G = {1} andH = {1}, then (G><H) = {1}, where t = max{r,s}.

Suppose that N) = {1} and (G/N)®®) = {1}. Arguing as in (a), we see that G(*) <
N, and so GU"+9) = {1}.

Remark The arguments in the proof show that the derived length of a subgroup or
quotient of G are not greater than the derived length of G, while the derived length of
a direct product is the maximum of the derived length of the factors.



9.2 Nilpotent groups

Recall that the centre of G is the subgroup Z(G) = {g € G : gx = xg for all x € G}. Itis
an abelian normal subgroup of G. Now we define a series of subgroups of G called the
upper central series of G as follows: Zy(G) = {1}, Z;11(G) is the normal subgroup of
G corresponding to the centre of G/Z;(G) by the Correspondence Theorem. (Briefly
we say Z;+1(G)/Zi(G) = Z(G/Zi(G)).)

Note that, if Z;(G) = Z;+1(G) (that is, if the centre of G/Z;(G) is trivial), then
Z,‘(G) = Zj(G) for all j> 1

The group G is said to be nilpotent if Z,(G) = G for some r; the smallest such r
is called the nilpotency class of G. Again, a non-trivial finite group is abelian if and
only if it is nilpotent with nilpotency class 1.

Theorem 9.3 The following conditions for a finite group G are equivalent:
(a) Z,(G) = G for some r;
(D) there is a chain of subgroups
G=Hy>H >Hy > >Hs; | > H;={1}
such that H;<<G and H;_ /H; < Z(G/H;) fori=1,2,...,s;
(c) all Sylow subgroups of G are normal;

(d) G is the direct product of its Sylow subgroups.

Thus nilpotency of a finite group can be defined by any of the equivalent conditions
of the Theorem. (As for solubility, the conditions are no longer equivalent for infinite
groups.) Note that

(a) anilpotent group is soluble (for the centre of a group is abelian, so the quotients
of the groups in the chain (b) are abelian);

(b) a group of prime power order is nilpotent;
(c) the smallest non-abelian group, S3, is soluble but not nilpotent.

Proof (a) implies (b): If Z.(G) = G, then the subgroups H; = Z,_;(G) satisfy the
conditions of (b).

(b) implies (c): We defer this for a moment.

(c) implies (d): This is proved by a straightforward induction on the number of
primes dividing |G|.



(d) implies (a): Recall that, if P is a non-trivial group of prime-power order, then
Z(P) # {1}. Thus, by induction, a group of prime-power order satisfies (a). Moreover,
it is easy to see that

Z(Py XX Py) =Z(P)) X -+ X Z(Py);

so a direct product of groups satisfying (a) also satisfies (a).

The remaining implication is a little more difficult; it follows from a couple of
lemmas which we now prove.

Lemma 9.4 Let P be a Sylow p-subgroup of the group G, and H a subgroup of G
which contains the normaliser Ng(P) of P. Then Ng(H) = H.

Proof Take g € Ng(H), so that g~'!Hg = H. Then g~ 'Pg < H, so g~ ! Pg is a Sylow
p-subgroup of H. By Sylow’s theorem, all the Sylow p-subgroups of H are conjugate,
so there exists 1 € H satisfying h~!(g~'Pg)h = P. Then gh € Ng(P) < H,so gh € H.
Since h € H, it follows that g € H. So Ng(H) = H, as claimed.

Remark This argument is known as the Frattini argument.

Lemma 9.5 Suppose that G satisfies (b) of the Theorem. If H is a proper subgroup of
G, then H < Ng(H).

Proof Let i be maximal such that G; < H. Theni+# 0, since H < G. Now G;_| £ H,
so there is a coset G;g in G;_ /G; which is not in H/G; but commutes with all cosets
of G;, and hence normalises H/G;. Thus, Ng /G,(H/ G;) > H/G,;. Judicious use of the
Correspondence Theorem shows that Ng(H) > H.

Now we can show that (b) implies (c) in the theorem. Suppose that G satisfies
(b), and let P be a Sylow p-subgroup of G, for some prime p. Let H = Ng(P). Then
Ng(H)=H. Butif H < G, then Ng(H) > H; so we must have H = G as required.
Remark The condition

If H< G, then H < Ng(H)
is equivalent to the four conditions of the theorem, and so provides another equivalent

to nilpotency of a finite group. [Can you prove this?]

Exercise Prove that subgroups, quotients and direct products of nilpotent groups are
nilpotent.



9.3 Supersoluble groups

A finite group G is supersoluble if there is a chain
G=Gy>G>G,>-->G,_1 >G,={l1}

of subgroups such that G; > G and G, /G; is cyclic of prime order fori = 1,2,...,r.

Look back at the first theorem of this chapter. In a soluble group G, we may
assume either that all the subgroups in the chain are normal in G (with the quotients
being abelian), or that all the quotients are cyclic of prime order (with each subgroup
being normal in the one before). The example G = A4 shows that we cannot ask both
things in general. The only candidate for Gy is V4, which is not cyclic; its cyclic
subgroups of order 2 are not normal in G. In other words, A4 is not supersoluble.
However, S5 is supersoluble.

Supersoluble groups form a class between nilpotent and soluble. (Any nilpotent
group is supersoluble, because a subgroup contained in the centre of a group G is
normal.) They are not as important as either nilpotent or soluble groups. Here is a
surprising fact about them.

Theorem 9.6 If G is supersoluble, then G' is nilpotent.

Proof This depends on the fact that the automorphism group of a cyclic group of
prime order is abelian. (In fact, Aut(C,) = C,—1.) Hence, a homomorphism from G
to Aut(C,) has the property that its kernel contains G'.
Let
G=Gy>G>G,>-->G,_1 >G,={1}

be a series of subgroups such that G; < G and G;_1/G; is cyclic of prime order for
i=1,2,...,r. Now consider the series
G =Hy>H, >H,>-->H,_1 >H,={l},
where H; = G;NG'. Then H; < G’, and
H; /H;=(Gi_1NG)/(GiN(Gi-1NG)) =2 (Gi_1NG)G;/G; < Gi_1/Gi,

so H;_1 /H; is either trivial or cyclic of prime order. By dropping terms from the series,
we can assume it is always cyclic of prime order.

Now G acts by conjugation on H;_; /H;. By our earlier remark, G’ acts trivially on
this quotient, which means that H; | /H; < Z(G'/H;). Since this is true for all i, we
see that G’ is nilpotent.



