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2.3 Methods of Estimation

2.3.1 Method of Moments

The Method of Moments is a simple technique based on the fdgdie sample
moments are “natural” estimators of population moments.

The k-th population momeruaf a random variablé” is
pw,=EY", k=1,2,...

and thek-th sample momemtf a sampleyy,.... Y, is

1 n
m;,:EZYZ.’f, k=1,2,....
=1

If Y7,...,Y, are assumed to be independent and identically distribiiea the
Method of Moments estimators of the distribution paranseter. . ., ), are ob-
tained by solving the set gfequations:

we=mp, k=12 ....p.

Under fairly general conditions, Method of Moments estionsitare asymptot-
ically normal and asymptotically unbiased. However, they @ot, in general,
efficient.

Example2.17. LetY; ~ N (p, 0%). We will find the Method of Moments estima-
tors of u ando?.

We havey, = E(Y) = p, py = EY?) = o>+ p?, m) = Y andm), =
> Y2/n. So, the Method of Moments estimatorsioéindo? satisfy the equa-

tions _
p=yY

g g I
g +M2:EZK2
i=1

Thus, we obtain
=Y

n

azz%i}/v;_??:%zg/;_?)z.
i=1

i=1
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Estimators obtained by the Method of Moments are not alwaygue.

Example2.18 LetY; ~ Pmsson()\) We will find the Method of Moments es-

timator of \. We know that for this distributioi(Y;) = var(Y;) = A. Hence
By comparing the first and second population and sample mtzwesn get two
different estimators of the same parameter,

/):1:?
_liy?—?Q
i3 Z .

U

Exercise2.11 LetY = (Vi,...,Y,)" be a random sample from the distribution
with the pdf given by

=W —y), yel0,]
. _ 92 9 9 5
Fy:v) = { 0, elsewhere

Find an estimator off using the Method of Moments.

2.3.2 Method of Maximum Likelihood

This method was introduced by R.A.Fisher and it is the mostraon method
of constructing estimators. We will illustrate the methgdtlhe following simple
example.

Example2.19 Assume that; ~ Bernoulli(p),i = 1,2, 3, 4, with probability of

iid

success equal g wherep € © = {}1, Z, j} i.e.,p belongs to the parameter space

of only three elements. We want to estimate paramebased on observations of
the random sampl® = (Y}, Y5, Y3, Y,)7T.

The joint pmfis

4
P(Y =y;p) = [[ P(Yi = yisp) = p=a ¥ (1 — )=,

i=1

The different values of the joint pmf for gl € © are given in the table below
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Z?:l Yi
0

=
NI
Nl

81 1

3

4
8L L
256 | 256 | 256
3

9

[=>]

27 | 16 1
256 256 256
. 9 16
PY =y;p) | 555 | 556 | 55 2
3 | 16 | 21 3
256 256 256
1| 16 | s 4
256 256 256

We see thaP (3.1, Y; = 0) is largest whep = 1. ltcan be interpreted that when
the observed value of the random sampléig), 0, 0)* the most likely value of
the parametep is p = i Then, this value can be considered as an estimate of
Similarly, we can conclude that when the observed value @féimdom sample
is, for example(0, 1,1,0)T, then the most likely value of the parametepis- %
Altogether, we have

if we observe all failures or just one success;
if we observe two failures and two successes;
if we observe three successes and one failure or four sleess

=3) )y RS)
I
OO | s | =

Note that, for each poirfty, v-, 3, y4)T, the estimaté is the value of parameter
p for which the joint mass function, treated as a functiompoattains maximum
(or its largest value).

Here, we treat the joint pmf as a function of parametéor a giveny. Such a
function is called thdikelihood functiorand it is denoted by.(p|y). O
Now we introduce a formal definition of tiaximum Likelihood EstimatdMLE).

Definition 2.11. TheMLE(®) is the statistic/(Y") = 9 whose value for a given
y satisfies the condition

L(dy) = sup L(9ly),

whereL(d|y) is the likelihood function fog.

Properties of MLE

The MLEs are invariant, that is

MLE(g(9)) = g(MLE(9)) = g(9).



2.3. METHODS OF ESTIMATION 99

MLEs are asymptotically normal and asymptptically unbiasélso, they are

efficient, that is
eff (¢(9)) = lim CRLBU()) _
n—o  var g(9)
In this case, for large, var g(@) is approximately equal to the CRLB. Therefore,
for largen,

9(d) ~ N (9(8), CRLB(g(9)))
approximately. This is called treesymptotic distribution of g(@).

Example2.20 Suppose thalt, ..., Y, are independerioisson(A) random vari-
ables. Then the likelihood is

n

AVig—A Aiz1 Yig—nA

Ly =11 v T w!

i=1 v

We need to find the value of which maximizes the likelihood. This value will
also maximize&/(\|y) = log L(A|y), which is easier to work with. Now, we have

g()\‘y) = Zyz log A\ — nA — Zlog(yi!)-
i=1 i=1

The value ofA which maximizes/(\|y) is the solution ofd¢/d\ = 0. Thus,
solving the equation
e o Z?:l Yi

D
yields the estimatoh = T(Y) = S Yi/n =Y, which is the same as the
Method of Moments estimator. The second derivative is megér all A hence,
A indeed maximizes the log-likelihood. 0

n=~0

Example2.21 Suppose thaty,...,Y, are independemy/(u, 02?) random vari-
ables. Then the likelihood is

Lj1,0%ly) :H Lo {0

and so the log-likelihood is

n 1
U, 0ly) = —5 log(2m0?) — 557 2Wi — 1)*.
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Thus, we have

n n

1 1
@ZQZQ Z(yz-—u)
=1

=1
and

ol n 1 1 n 1 <«
_ —__ 9 - =)= —— 4 — —
Oo? 2 2mo? T 204 X_:(y 2 202 + 204 ;(y

Setting these equations to zero, we obtain

A_2 _Oizyz_nua

so thati = Y is the maximum likelihood estimator @f and

n

“552 T 551 ?=0= no’ —Z(yi—§)2,
i=1
sothats? = " (V; — Y)?/nis the maximum likelihood estimator of, which
are the same as the Method of Moments estimators. 0
Exercise2.12 LetY = (Vi,...,Y,)T be arandom sample from a Gamma distri-

bution,Gamma(\, «), with the following pdf

«

fly; A o) = F)(\a)yo‘_le_’\y, for y > 0.

Assume that the parametelis known.

(a) ldentify the complete sufficient statistic far

(b) Find theMLE[g()\)], whereg(\) = . Is the estimator a function of the
complete sufficient statistic?

(c) Knowing thatE(Y;) = a} foralli = 1,...,n, check that th&ILE[g(\)] is
an unbiased estimator gf\). What can you conclude about the properties
of the estimator?
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2.3.3 Method of Least Squares

If Y1,...,Y, are independent random variables, which have the samavargnd
higher-order moments, and, if eaél{Y;) is a linear function of,, ..., v,, then
the Least Squares estimateslef. . . , ), are obtained by minimizing

n

S(@) =Y {Vi— E(V)}*.

i=1

The Least Squares estimator @f has minimum variance amongst dthear
unbiased estimators af; and is known as theest linear unbiased estimator
(BLUE). If the Y;s have a normal distribution, then the Least Squares estimat
of ¥; is the Maximum Likelihood estimator, has a normal distribatand is the
MVUE.

Example2.22 Suppose thaty, ..., Y,, are independent (., o?) random vari-
ables and that,,, .4, ...,Y, are independen¥/(u., 0?) random variables. Find
the least squares estimators.gfand ..

Since

N\ M1, 1=1,...,m,
E<Y;>_{ fa, t=mn;+1,...,n,

it is a linear function ofu; andus. The Least Squares estimators are obtained by
minimizing

ni n

S=Y (Y- EO)F =Y (V- mP+ Y (- m).

=1 i=n1+1

Now,
a8 i 1
i ;( 1) i = ; )
and
08 - 1 —
8—:_2 Z (Yi—p) = 0= jip = — Z Yi=Yo,
H2 i=n1+1 N2 i

wheren; = n — ny. S0, we estimate the mean of each group in the population by
the mean of the corresponding sample. 0
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Example2.23 Suppose that; ~ N (8y+ 515, 0%) independently foi = 1,2, ..., n
wherezx; is someexplanatory variable. This is called the simple linear regres-
sion model. Find the least squares estimators,a&ndj;.

SinceE(Y;) = po + fizy, itis a linear function of3, and5;. So we can obtain
the least squares estimates by minimizing

S = Z(Yz — Bo — 51%’)2-
i=1

Now,

08 " . R 5 o Bz

5 = 22 imBo—Biz) = 0= 3 Vimnfo—fi 3w =0= fy =7-hiT
=1 =1 =1

and

a_ﬁl—_zzm /30—@:@2—0:»2@31 /302@ ﬁlzx = 0.

Substituting the first equation into the second one, we have

sz — (757 sz—ﬂlzx =0= (ms —ZI>31=nx_y—zn:xiYi
1=1

Hence, we have the estimators

R 4
o=V -Br and f— 2t IY
Zzlxz_nx

These are the Least Squares estimators ofgdgeession coefficientss, andg;.
O

Exercise€2.13 Givendata(zy, 1), ..., (Zn, Yn), assume that; ~ N (Bo+ B2, 02)
independently foi = 1,2, ..., n and thai? is known.

(a) Show that the Maximum Likelihood Estimators/@fand/s; must be the same
as the Least Squares Estimators of these parameters.
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(b) The quench bath temperature in a heat treatment operatisrtheaght to
affect the Rockwell hardness of a certain coil spring. Anegkxpent was
run in which several springs were treated under four differemperatures.

The table gives values of the set temperatur¢sd the observed hardness

(y, coded). Assuming that hardness depends on temperatesgl\irand
the variance of the r.vs is constant we may write the follgvimodel:

E(Y;) = Bo + Bixi, var(Y;) = o”.

Calculate the LS estimates ¢f and of 5,. What is the estimate of the
expected hardness given the temperature40?

Run| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X 30 30 30 30 40 40 40 50 50 50 60 60 60 60
y 55.8 59.1 548 546 431 422 452 316 309 308 175 20.52 176.9

In this section we were considering so called point estinsatdVe used vari-
ous methods, such as the Method of Moments, Maximum Liketihor Least
Squares, to derive them. We may also construct the estimaging the Rao-
Blackwell Theorem. The estimators are functions

T(Vy,...,Y,) = O,

that is, their values belong to the parameter space. Howneevalues vary with
the observed sample. If the estimator is MVUE we may expextt‘tn average”
the calculated estimates are very close to the true parametealso that the
variability of the estimates is the smallest possible.

Sometimes it is more appropriate to construct an intervatkvbovers the un-
known parameter with high probability and whose limits depen the sample.
We introduce such intervals in the next section. The poititnedors are used in
constructing the intervals.



