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2.3 Methods of Estimation

2.3.1 Method of Moments

The Method of Moments is a simple technique based on the idea that the sample
moments are “natural” estimators of population moments.

Thek-th population momentof a random variableY is

µ′

k = E(Y k), k = 1, 2, . . .

and thek-th sample momentof a sampleY1, . . . , Yn is

m′

k =
1

n

n∑

i=1

Y k
i , k = 1, 2, . . . .

If Y1, . . . , Yn are assumed to be independent and identically distributed then the
Method of Moments estimators of the distribution parameters ϑ1, . . . , ϑp are ob-
tained by solving the set ofp equations:

µ′

k = m′

k, k = 1, 2, . . . , p.

Under fairly general conditions, Method of Moments estimators are asymptot-
ically normal and asymptotically unbiased. However, they are not, in general,
efficient.

Example2.17. Let Yi ∼
iid

N (µ, σ2). We will find the Method of Moments estima-

tors ofµ andσ2.

We haveµ′

1 = E(Y ) = µ, µ′

2 = E(Y 2) = σ2 + µ2, m′

1 = Y andm′

2 =∑n

i=1
Y 2
i /n. So, the Method of Moments estimators ofµ andσ2 satisfy the equa-

tions
µ̂ = Y

σ̂2 + µ̂2 =
1

n

n∑

i=1

Y 2
i .

Thus, we obtain

µ̂ = Y

σ̂2 =
1

n

n∑

i=1

Y 2
i − Y

2
=

1

n

n∑

i=1

(Yi − Y )2.
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�

Estimators obtained by the Method of Moments are not always unique.

Example2.18. Let Yi ∼
iid

Poisson(λ). We will find the Method of Moments es-

timator ofλ. We know that for this distributionE(Yi) = var(Yi) = λ. Hence
By comparing the first and second population and sample moments we get two
different estimators of the same parameter,

λ̂1 = Y

λ̂2 =
1

n

n∑

i=1

Y 2
i − Y

2
.

�

Exercise2.11. Let Y = (Y1, . . . , Yn)
T be a random sample from the distribution

with the pdf given by

f(y;ϑ) =

{
2

ϑ2 (ϑ− y), y ∈ [0, ϑ],
0, elsewhere.

Find an estimator ofϑ using the Method of Moments.

2.3.2 Method of Maximum Likelihood

This method was introduced by R.A.Fisher and it is the most common method
of constructing estimators. We will illustrate the method by the following simple
example.

Example2.19. Assume thatYi ∼
iid

Bernoulli(p), i = 1, 2, 3, 4, with probability of

success equal top, wherep ∈ Θ = {1

4
, 2

4
, 3

4
} i.e.,p belongs to the parameter space

of only three elements. We want to estimate parameterp based on observations of
the random sampleY = (Y1, Y2, Y3, Y4)

T.

The joint pmf is

P (Y = y; p) =
4∏

i=1

P (Yi = yi; p) = p
∑

4

i=1
yi(1− p)4−

∑
4

i=1
yi .

The different values of the joint pmf for allp ∈ Θ are given in the table below
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p 1

4

2

4

3

4

∑
4

i=1
yi

81

256

16

256

1

256
0

27

256

16

256

3

256
1

P (Y = y; p) 9

256

16

256

9

256
2

3

256

16

256

27

256
3

1

256

16

256

81

256
4

We see thatP (
∑4

i=1
Yi = 0) is largest whenp = 1

4
. It can be interpreted that when

the observed value of the random sample is(0, 0, 0, 0)T the most likely value of
the parameterp is p̂ = 1

4
. Then, this value can be considered as an estimate ofp.

Similarly, we can conclude that when the observed value of the random sample
is, for example,(0, 1, 1, 0)T, then the most likely value of the parameter isp̂ = 1

2
.

Altogether, we have

p̂ = 1

4
if we observe all failures or just one success;

p̂ = 1

2
if we observe two failures and two successes;

p̂ = 3

4
if we observe three successes and one failure or four successes.

Note that, for each point(y1, y2, y3, y4)T, the estimatêp is the value of parameter
p for which the joint mass function, treated as a function ofp, attains maximum
(or its largest value).

Here, we treat the joint pmf as a function of parameterp for a giveny. Such a
function is called thelikelihood functionand it is denoted byL(p|y).

�

Now we introduce a formal definition of theMaximum Likelihood Estimator(MLE).

Definition 2.11. TheMLE(ϑ) is the statisticT (Y ) = ϑ̂ whose value for a given
y satisfies the condition

L(ϑ̂|y) = sup
ϑ∈Θ

L(ϑ|y),

whereL(ϑ|y) is the likelihood function forϑ.

Properties of MLE

The MLEs are invariant, that is

MLE(g(ϑ)) = g(MLE(ϑ)) = g(ϑ̂).
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MLEs are asymptotically normal and asymptptically unbiased. Also, they are
efficient, that is

eff(g(ϑ̂)) = lim
n→∞

CRLB(g(ϑ))

var g(ϑ̂)
= 1.

In this case, for largen, var g(ϑ̂) is approximately equal to the CRLB. Therefore,
for largen,

g(ϑ̂) ∼ N
(
g(ϑ),CRLB(g(ϑ))

)

approximately. This is called theasymptotic distribution of g(ϑ̂).

Example2.20. Suppose thatY1, . . . , Yn are independentPoisson(λ) random vari-
ables. Then the likelihood is

L(λ|y) =
n∏

i=1

λyie−λ

yi!
=

λ
∑

n

i=1
yie−nλ

∏n

i=1
yi!

.

We need to find the value ofλ which maximizes the likelihood. This value will
also maximizè (λ|y) = logL(λ|y), which is easier to work with. Now, we have

`(λ|y) =
n∑

i=1

yi log λ− nλ−
n∑

i=1

log(yi!).

The value ofλ which maximizes̀ (λ|y) is the solution ofd`/dλ = 0. Thus,
solving the equation

d`

dλ
=

∑n

i=1
yi

λ
− n = 0

yields the estimator̂λ = T (Y ) =
∑n

i=1
Yi/n = Y , which is the same as the

Method of Moments estimator. The second derivative is negative for all λ hence,
λ̂ indeed maximizes the log-likelihood.

�

Example2.21. Suppose thatY1, . . . , Yn are independentN (µ, σ2) random vari-
ables. Then the likelihood is

L(µ, σ2|y) =
n∏

i=1

1√
2πσ2

exp

{
−(yi − µ)2

2σ2

}

= (2πσ2)−
n

2 exp

{
− 1

2σ2

n∑

i=1

(yi − µ)2

}

and so the log-likelihood is

`(µ, σ2|y) = −n

2
log(2πσ2)− 1

2σ2

n∑

i=1

(yi − µ)2.
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Thus, we have

∂`

∂µ
=

1

2σ2

n∑

i=1

2(yi − µ) =
1

σ2

n∑

i=1

(yi − µ)

and

∂`

∂σ2
= −n

2

1

2πσ2
2π +

1

2σ4

n∑

i=1

(yi − µ)2 = − n

2σ2
+

1

2σ4

n∑

i=1

(yi − µ)2.

Setting these equations to zero, we obtain

1

σ̂2

n∑

i=1

(yi − µ̂) = 0 ⇒
n∑

i=1

yi = nµ̂,

so thatµ̂ = Y is the maximum likelihood estimator ofµ, and

− n

2σ̂2
+

1

2σ̂4

n∑

i=1

(yi − y)2 = 0 ⇒ nσ̂2 =

n∑

i=1

(yi − y)2,

so that̂σ2 =
∑n

i=1
(Yi−Y )2/n is the maximum likelihood estimator ofσ2, which

are the same as the Method of Moments estimators.
�

Exercise2.12. LetY = (Y1, . . . , Yn)
T be a random sample from a Gamma distri-

bution,Gamma(λ, α), with the following pdf

f(y;λ, α) =
λα

Γ(α)
yα−1e−λy, for y > 0.

Assume that the parameterα is known.

(a) Identify the complete sufficient statistic forλ.

(b) Find theMLE[g(λ)], whereg(λ) = 1

λ
. Is the estimator a function of the

complete sufficient statistic?

(c) Knowing thatE(Yi) = α 1

λ
for all i = 1, . . . , n, check that theMLE[g(λ)] is

an unbiased estimator ofg(λ). What can you conclude about the properties
of the estimator?
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2.3.3 Method of Least Squares

If Y1, . . . , Yn are independent random variables, which have the same variance and
higher-order moments, and, if eachE(Yi) is a linear function ofϑ1, . . . , ϑp, then
the Least Squares estimates ofϑ1, . . . , ϑp are obtained by minimizing

S(ϑ) =

n∑

i=1

{Yi −E(Yi)}2.

The Least Squares estimator ofϑj has minimum variance amongst alllinear
unbiased estimators ofϑj and is known as thebest linear unbiased estimator
(BLUE). If the Yis have a normal distribution, then the Least Squares estimator
of ϑj is the Maximum Likelihood estimator, has a normal distribution and is the
MVUE.

Example2.22. Suppose thatY1, . . . , Yn1
are independentN (µ1, σ

2) random vari-
ables and thatYn1+1, . . . , Yn are independentN (µ2, σ

2) random variables. Find
the least squares estimators ofµ1 andµ2.

Since

E(Yi) =

{
µ1, i = 1, . . . , n1,
µ2, i = n1 + 1, . . . , n,

it is a linear function ofµ1 andµ2. The Least Squares estimators are obtained by
minimizing

S =

n∑

i=1

{Yi −E(Yi)}2 =
n1∑

i=1

(Yi − µ1)
2 +

n∑

i=n1+1

(Yi − µ2)
2.

Now,
∂S

∂µ1

= −2

n1∑

i=1

(Yi − µ1) = 0 ⇒ µ̂1 =
1

n1

n1∑

i=1

Yi = Y 1

and
∂S

∂µ2

= −2
n∑

i=n1+1

(Yi − µ2) = 0 ⇒ µ̂2 =
1

n2

n∑

i=n1+1

Yi = Y 2,

wheren2 = n− n1. So, we estimate the mean of each group in the population by
the mean of the corresponding sample.

�
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Example2.23. Suppose thatYi ∼ N (β0+β1xi, σ
2) independently fori = 1, 2, . . . , n,

wherexi is someexplanatory variable. This is called the simple linear regres-
sion model. Find the least squares estimators ofβ0 andβ1.

SinceE(Yi) = β0 + β1xi, it is a linear function ofβ0 andβ1. So we can obtain
the least squares estimates by minimizing

S =
n∑

i=1

(Yi − β0 − β1xi)
2.

Now,

∂S

∂β0

= −2

n∑

i=1

(Yi−β0−β1xi) = 0 ⇒
n∑

i=1

Yi−nβ̂0−β̂1

n∑

i=1

xi = 0 ⇒ β̂0 = y−β̂1x

and

∂S

∂β1

= −2

n∑

i=1

xi(Yi − β0 − β1xi) = 0 ⇒
n∑

i=1

xiYi − β̂0

n∑

i=1

xi − β̂1

n∑

i=1

x2
i = 0.

Substituting the first equation into the second one, we have

n∑

i=1

xiYi−(y−β̂1x)

n∑

i=1

xi−β̂1

n∑

i=1

x2
i = 0 ⇒

(
nx2 −

n∑

i=1

x2
i

)
β̂1 = nxy−

n∑

i=1

xiYi.

Hence, we have the estimators

β̂0 = Y − β̂1x and β̂1 =

∑n

i=1
xiYi − nxY∑n

i=1
x2
i − nx2

.

These are the Least Squares estimators of theregression coefficientsβ0 andβ1.

�

Exercise2.13. Given data,(x1, y1), . . . , (xn, yn), assume thatYi ∼ N (β0+β1xi, σ
2)

independently fori = 1, 2, . . . , n and thatσ2 is known.

(a) Show that the Maximum Likelihood Estimators ofβ0 andβ1 must be the same
as the Least Squares Estimators of these parameters.
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(b) The quench bath temperature in a heat treatment operation was thought to
affect the Rockwell hardness of a certain coil spring. An experiment was
run in which several springs were treated under four different temperatures.
The table gives values of the set temperatures (x) and the observed hardness
(y, coded). Assuming that hardness depends on temperature linearly and
the variance of the r.vs is constant we may write the following model:

E(Yi) = β0 + β1xi, var(Yi) = σ2.

Calculate the LS estimates ofβ0 and ofβ1. What is the estimate of the
expected hardness given the temperaturex = 40?

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x 30 30 30 30 40 40 40 50 50 50 60 60 60 60
y 55.8 59.1 54.8 54.6 43.1 42.2 45.2 31.6 30.9 30.8 17.5 20.5 17.2 16.9

In this section we were considering so called point estimators. We used vari-
ous methods, such as the Method of Moments, Maximum Likelihood or Least
Squares, to derive them. We may also construct the estimators using the Rao-
Blackwell Theorem. The estimators are functions

T (Y1, . . . , Yn) → Θ,

that is, their values belong to the parameter space. However, the values vary with
the observed sample. If the estimator is MVUE we may expect that “on average”
the calculated estimates are very close to the true parameter and also that the
variability of the estimates is the smallest possible.

Sometimes it is more appropriate to construct an interval which covers the un-
known parameter with high probability and whose limits depend on the sample.
We introduce such intervals in the next section. The point estimators are used in
constructing the intervals.


