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In this examination, N = {1, 2, 3, . . .} stands for the set of natural numbers, Z stands
for the set of integers, Q stands for the set of rational numbers, and R stands for the
set of real numbers.

Section A: Each question carries 10 marks. You should attempt ALL
FOUR questions.

Question 1 (a) Let X be a set and let d : X ×X → R be a function. State the
three axioms that d must satisfy in order to be a metric. [4]

(b) State the definitions of open and closed sets. [3]

(c) Prove that for a < b in R with the Euclidean metric, the open interval (a, b) is
an open set. [3]

Question 2 (a) Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be
a function. Define what it means for f to be continuous. [3]

(b) Consider the metric spaces (R3, d1) and (R, d1). Using the definition from (a),
prove that the function f : R3 → R, f(x, y, z) = 2x + 3y + 4z is continuous. [7]

Question 3 (a) Let (fn) be a sequence of functions between two metric spaces
X and Y . Define what it means for the sequence fn to converge to a function
f : X → Y pointwise. [2]

(b) For each of the following sequences (fn) of functions in C[0,∞) decide whether
the sequence converges to a function f in C[0,∞) pointwise. If the sequence
converges pointwise, determine whether the sequence converges to f uniformly.

(i) fn(x) = e−nx2
. [4]

(ii) fn(x) = xe−nx2
, [4]

Question 4 (a) Explain what it means for a subset A ⊆ X of a metric space to
be compact. [3]

(b) Which of the following sets A are compact, regarded as subspaces of R (with
the Euclidean metric)?

(i) A = Z [3]

(ii) A = {−100, 200, 5000} [2]

(iii) A =
{

n+1
n : n ∈ N

}
[2]

Briefly justify each of your answers. You may use a theorem proved in class
characterizing the compact subsets of R.
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Section B: Each question carries 30 marks. You may attempt all
questions. Except for the award of a bare pass, only marks for the
best TWO questions will be counted.

Question 5 (a) Suppose that (X, dX) and (Y, dY ) are metric spaces where

dX(x1, x2) =
{

1 if x1 6= x2;
0 if x1 = x2.

Using the definition of continuous functions, prove that any function f : X → Y
is continuous. [8]

(b) Given a metric space (X, d) and x ∈ X, r > 0, define what is meant by the
open and closed balls Br(x) and Br[x]. [4]

(c) Let f : X → Y be a continuous function between two metric spaces (X, dX)
and (Y, dY ). If (xn) is a convergent sequence in X, prove that (f(xn)) is a
convergent sequence in Y . You may assume that f−1(Br(y)) is open for any
y ∈ Y , r > 0. [10]

(d) Let f : R → R be defined by

f(x) =
{

0 if x ≤ 0;
x + 1 if x > 0.

Describe the inverse image S = f−1((−∞, 1/2)). Is the set S open in R with
the Euclidean metric? Does your answer imply that f is either continuous or
discontinuous? [8]

Question 6 (a) State what it means for a sequence in a metric space to be Cauchy. [3]

(b) Which of the following sets A are complete, regarded as subspaces of R (with
the usual metric).

(i) A = Z [2]

(ii) A = Q [2]

Briefly justify your answers.

(c) State an example of metric space X and a subspace A ⊆ X, where X is not
complete and A is complete. [3]

(d) Consider the complete metric space C[0, 1] with the sup-metric

d(f, g) = sup
0≤x≤1

|f(x)− g(x)|.

(i) Prove that {f ∈ C[0, 1] : f(0) = 0} is complete as a subspace of C[0, 1]. [5]

(ii) Prove that {f ∈ C[0, 1] : f(0) > 0} is not complete as a subspace of
C[0, 1]. [5]

(e) Prove that if (X, d) is a metric space and if (xn) is a Cauchy sequence in X
with a convergent subsequence, then (xn) is convergent. [10]
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Question 7 (a) From first principles — i.e., directly from the definition you gave
in Question 4 (a) — prove that the following subsets of R are not compact
(with the usual metric).

(i) [0,∞). [2]

(ii) [0, 1), [2]

(iii) Q ∩ [0, 1]. [2]

(b) Prove that any closed subset of a compact metric space is compact. [8]

(c) Let K, L be compact subsets of a metric space.

(i) Let K, L be compact subsets of a metric space. Prove that K ∪ L and
K ∩ L are compact. [8]

(ii) Let K be a compact subset and let L be a closed subset of a metric space.
Prove that K ∩ L is compact, but that K ∪ L need not be compact. [8]

End of Paper
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