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Section A: Each question carries 10 marks. You should attempt ALL
FOUR questions.

Question 1 Suppose % is a function % : X ×X → R. Write down the axioms that
must be satisfied by % for it to be a metric on X.

A function f : {a, b, c} × {a, b, c} → R may be represented as a table. For
example, the table

f a b c

a 0 1 1
b 2 0 1
c 1 3 2

denotes the function f with f(a, a) = 0, f(a, b) = 1, . . . , f(c, c) = 2.
Which of the following functions f1, f2, f3 and f4 are metrics on {a, b, c}? For

each function that is not a metric, identify which axiom is violated.

f1 a b c

a 0 1 2
b 2 0 1
c 2 1 0

f2 a b c

a 0 1 2
b 1 0 1
c 2 1 1

f3 a b c

a 0 1 3
b 1 0 2
c 3 2 0

f4 a b c

a 0 1 3
b 1 0 1
c 3 1 0

Question 2 (a) Let (X, %) and (Y, σ) be metric spaces, and f be a function from
(X, %) to (Y, σ). Explain what it means for f to be continuous.

(b) Assume that R is equipped with its usual metric, and the two element set {a, b}
with the discrete metric.

(i) Describe the continuous functions R→ {a, b}.
(ii) Describe the continuous functions {a, b} → R.

Question 3 Denote by C[0, π] the set of all real continuous functions on the closed
interval [0, π].

(a) Define the sup (or uniform) metric that makes C[0, π] into a metric space.

(b) For each of the following sequences (fn) of functions in C[0, π] decide whether
the sequence converges in C[0, π]. For the sequences that converge, state the
limit function f . (No explanation is required.)

(i) fn(x) = sin(nx),

(ii) fn(x) = n sin(x/n),

(iii) fn(x) = (1
2 sinx)n and

(iv) fn(x) = (sinx)n.
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Question 4 (a) Suppose that (xn) is a sequence in the metric space (X, %). Ex-
plain what it means for (xn) to be a Cauchy sequence.

(b) Explain what it means for (X, %) to be complete.

(c) Which of the following sets A are complete, regarded as subspaces of R (with
the usual metric)?

(i) A = {0, 1, 2},
(ii) A = {1/n : n ∈ Z \ {0}} and

(iii) A = {1/n : n ∈ Z \ {0}} ∪ {0}.

Briefly justify each of your answers. You may assume R is complete.

Section B: Each question carries 30 marks. You may attempt all
questions. Except for the award of a bare pass, only marks for the
best TWO questions will be counted.

Question 5 (a) Suppose (X, %) is a metric space. Define the open ball Br(α),
where α ∈ X and r > 0. Explain what it means for a set S ⊆ X to be open. [6]

(b) Let Ω be an arbitrary index set and {Aω : ω ∈ Ω} be a collection of open sets
in (X, %) indexed by Ω. Prove that S =

⋃
ω∈ΩAω is open. Prove that the

intersection A1 ∩A2 of two open sets A1, A2 is open. [8]

(c) Consider the metric d∗ on R2 defined by

d∗(p, q) =

{
|p1 − q1|, if p2 = q2;

|p1 − q1|+ 1, otherwise,

where p = (p1, p2) and q = (q1, q2). Prove that, for any ω ∈ R, the set

Aω = (−2, 2)× {ω} = {(x, ω) : x ∈ (−2, 2)}

is open in the metric space (R2, d∗). [8]

(d) Deduce that S = (−2, 2)× [−2, 2] is an open set in (R2, d∗). [3]

(e) Provide an example of an infinite collection of open sets {An : n ∈ N} in the
metric space (R2, d∗), whose intersection S =

⋂
n∈NAn is not open. You should

state what S is, but you are not required to demonstrate that it is not open. [5]
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Question 6 Suppose (X, %) and (Y, σ) are metric spaces and f is a function from
X to Y .

(a) Define the inverse image f−1(A) of a set A ⊆ Y . [4]

(b) Suppose that, for every open set A ⊆ Y , the inverse image f−1(A) of A is
open. Prove that f is continuous (in the ε-δ sense). [10]

[Hint. Given x ∈ X and ε > 0, consider an open ball Bε(y) ⊆ Y of radius ε
centered at y = f(x).]

(c) Consider the (discontinuous) function f : R2 → R defined by

f(x, y) =

{
0, if x = y = 0;

xy/(x2 + y2), otherwise.

(i) Describe the inverse image S = f−1(R \ {0}) of R \ {0} (i.e., the real
line with the origin removed) under f . Is the set S open in R2 with the
Euclidean metric? Briefly justify your answer. [8]

(ii) Describe the inverse image S = f−1((−∞, 1
2)) of the open interval (−∞, 1

2).
Is the set S open in R2 with the Euclidean metric? Briefly justify your
answer. [8]

Question 7 (a) Let (X, %) be a metric space, and K be a subset of X. Explain
what it means for K to be (sequentially) compact. [4]

(b) Suppose [a, b] is a closed interval of R with the usual metric, and suppose
(xn) is a sequence in [a, b]. Present a bisection procedure for constructing a
subsequence of (xn) that is a Cauchy sequence in [a, b]. [12]

(c) Does the procedure you described in part (b) continue to work when [a, b] is
replaced with [a, b] ∩ Q? If it doesn’t, what goes wrong? If it does, discuss
whether it follows that [a, b] ∩Q is compact (as a subset of R). [4]

(d) Explain what it means for a subset S ⊆ X of a metric space to be bounded.
State a theorem relating the concepts compact, closed and bounded in the
context of Rn with the Euclidean metric. [5]

(e) Suppose f : R→ R is a continuous function and A ⊆ R. Which of the following
statements are true in general and which false? For the ones that are false,
provide a counterexample. [5]

(i) If A is compact then f(A) is compact.

(ii) If A is closed then f(A) is closed.

(iii) If A is bounded then f(A) is bounded.

End of Paper
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