MTH6126 MAY 2011 EXAMINATION: SPECIMEN SOLUTIONS

MARK JERRUM

Q1 [Basic definition plus easy examples/counterexamples.] For all $x, y, z \in X$: (M1) $\varrho(x, y) \ge 0$ with equality iff x = y; (M2) $\varrho(x, y) = \varrho(y, x)$, and (M3) $\varrho(x, z) \le \varrho(x, y) + \varrho(y, z)$. [1 mark each.]

 f_1 is not a metric as it violates M2 $(f(a, b) \neq f(b, a))$; f_2 is not a metric as it violates M1 $(f(c, c) \neq 0)$; f_3 is a metric; and f_4 is not a metric as it violates M3 $(f(a, c) \not\leq f(a, b) + f(b, c))$. [1 mark for each yes/no, and 1 additional mark for the violated axiom.]

- Q2 [Basic definition plus easy examples.]
 - (a) E.g., f is continuous at $\alpha \in \mathbb{R}$ if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $f(B^{\varrho}_{\delta}(\alpha)) \subseteq B^{\sigma}_{\varepsilon}(f(\alpha))$. $(B^{\varrho}_{\delta}(\alpha))$ is the ball in (X, ϱ) of radius δ centered at α , etc.) f is continuous if it is continuous at all $\alpha \in X$. (Definition in terms of images of convergent sequences also fine.) [4 marks.]
 - (b) (i) The only continuous functions are the constant function *a* and the constant function *b*. [3 marks.]
 - (ii) Any function from $\{a, b\}$ to \mathbb{R} is continuous. [3 marks.]
- Q3 (a) [Basic definition.] $d_{\infty}(f,g) = \sup_{x \in [0,\pi]} |f(x) g(x)|$. [4 marks.]
 - (b) [(ii) and (iv) are from coursework; (i) and (iii) unseen.]
 - (i) Does not converge.
 - (ii) Converges to the identity function.
 - (iii) Converges to the zero function.
 - (iv) Does not converge. (Converges pointwise only.)
 - [1 mark for each yes/no, and 1 additional mark for the limit function.]
- Q4 (a) [Basic definitions in the first two parts.] A sequence (x_n) is Cauchy if, for all $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\varrho(x_n, x_m) < \varepsilon$ for all $n, m \ge N_{\varepsilon}$. [2 marks.]
 - (b) (X, ϱ) is complete if every Cauchy sequence in (X, ϱ) converges to a point in X. [2 marks.]
 - (c) [Something similar to (ii) and (iii) in coursework.]
 - (i) Complete. (A is a closed subset of a complete space \mathbb{R} .)
 - (ii) Not complete. (The sequence $x_n = 1/n$ is a Cauchy sequence that converges in \mathbb{R} to 0, but $0 \notin A$.)
 - (iii) Complete. (The complement of A is a union of open intervals and hence open. Thus A a closed subset of \mathbb{R}).

[1 mark for each yes/no answer, and an additional 1 mark for the explanation.]

Date: 31st December 2010.

MARK JERRUM

- Q5 (a) [Basic definition.] $B_r(\alpha) = \{x : \rho(x, \alpha) < r\}$. [3 marks.] A set S is open if, for all $x \in S$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq S$. [3 marks.]
 - (b) [Bookwork.] Let $x \in S$ be arbitrary. Then $x \in A_{\omega}$ for some $\omega \in \Omega$. As A_{ω} is open, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A_{\omega} \subseteq S$. Hence S is open. [4 marks.]

Let $x \in A_1 \cap A_2$ be arbitrary. Since A_1 is open, there is a ball $B_{r_1}(x)$ contained in A_1 ; similarly, there is a ball $B_{r_2}(x)$ contained in A_2 . Let $r = \min\{r_1, r_2\}$; then the ball $B_r(x)$ is contained in $A_1 \cap A_2$. [4 marks.]

- (c) [This metric appeared in coursework.] For any $a \in \mathbb{R}$ the ball $B_1((a, \omega))$ in (\mathbb{R}^2, d^*) is the set $(a - 1, a + 1) \times \{\omega\}$. (A point p is in $B_1((a, \omega))$ iff $d^*((a, \omega), (p_1, p_2) < 1$. From the definition of d^* , the letter condition holds iff $p_2 = \omega$ and $|p_1 - a| < 1$.) Then A_{ω} is the union of open balls $(-2, 0) \times \{\omega\}$, $(-1, 1) \times \{\omega\}$ and $(0, 2) \times \{\omega\}$, and hence open. [4 marks for saying what an open ball in the metric looks like, and 4 marks for completing the job.]
- (d) [Easy consequence of (b) & (c).]

$$(-2,2) \times [-2,2] = \bigcup_{\omega \in [-2,2]} A_{\omega}.$$

The set in question is the union of open sets and hence open. [3 marks.]

- (e) [Easy adaptation of a standard example from \mathbb{R} .] E.g., $A_n = (-1 1/n, 1 + 1/n) \times \{0\}$. For every *n* this set is open, by part (c). The intersection $\bigcap_{n \in \mathbb{N}} A_n$ is the set $S = [-1, 1] \times \{0\}$. This set is not open. Consider the point $(1, 0) \in S$. For all $\varepsilon > 0$ the ball $B_{\varepsilon}((1, 0))$ is not contained in S: e.g., the point $(1 + \varepsilon/2, 0)$ is in the ball but not in S. (Justification not required.) [5 marks.]
- Q6 (a) [Basic definition.] $f^{-1}(A) = \{x \in X : f(x) \in A\}$. [4 marks.]
 - (b) [Bookwork.] Assume that the inverse image of any open set is open. Let $x \in X, \varepsilon > 0$ be arbitrary, and let $B_{\varepsilon}(y)$ be an open ball centred at $y = f(x) \in Y$ of radius ε . The inverse image $f^{-1}(B_{\varepsilon}(y))$ of the open ball is an open set [3 marks] that contains the point x (since y = f(x) is certainly a member of $B_{\varepsilon}(y)$) [2 marks]. Therefore there exists a ball $B_{\delta}(x)$ about x such that $B_{\delta}(x) \subseteq f^{-1}(B_{\varepsilon}(y))$ [3 marks] or, equivalently, $f(B_{\delta}(x)) \subseteq B_{\varepsilon}(y)$ [2 marks]. Since x, ε were arbitrary, it follows that f is continuous.
 - (c) [Students have seen this function before. Part (i) is unseen, part (ii) is from coursework.]
 - (i) If x = 0 or y = 0 then f(x, y) = 0; otherwise $f(x, y) \neq 0$. Thus $S = f^{-1}(\mathbb{R} \setminus \{0\})$ contains every point of \mathbb{R}^2 except the axes, i.e., $S = \{(x, y) : x \neq 0 \text{ and } y \neq 0\}$. The set S is open since, for every point $(x, y) \in S$, the ball $B_{\varepsilon}((x, y))$ is contained in S, where $\varepsilon = \min\{|x|, |y|\}$. [4 marks for description of inverse image, 2 for open/not open, 2 marks for justification.]

 $\mathbf{2}$

(ii)
$$S = \{(x,y) : f(x,y) < \frac{1}{2}\}$$
. Suppose $(x,y) \neq (0,0)$. Then
 $f(x,y) < \frac{1}{2} \iff xy/(x^2 + y^2) < \frac{1}{2}$
 $\iff x^2 + y^2 - 2xy > 0$
 $\iff (x-y)^2 > 0$
 $\iff x \neq y$.

Also, $f(0,0) = 0 < \frac{1}{2}$, so $(0,0) \in S$. Summarising, $S = \{(x,y) : x \neq y \lor x = y = 0\}$. This set is not open, since the ball $B_{\varepsilon}((0,0))$ is contained in the set for no $\varepsilon > 0$. [4 marks for description of inverse image, 2 for open/not open, 2 marks for justification.]

- Q7 (a) [Basic definition.] K is *compact* if every sequence of points from K has a subsequence converging to a limit in K.
 - (b) [Bookwork.] Let (x_n) be an arbitrary sequence of numbers lying in a closed interval [a, b]. Let us split [a, b] into the union of two intervals [a, (a + b)/2]and [(a + b)/2, b] of length L/2, where L = b - a [3 marks]. At least one of these intervals contains infinitely many elements x_n of our sequence [2 marks]. Let us choose one of these elements, say x_{n_1} , and denote it by y_1 [2 marks]. Now we split the interval of length L/2 which contains infinitely many elements x_n into the union of two intervals of length L/4. Again, at least one of these intervals contains infinitely many elements of x_n . We choose one of these elements, say x_{n_2} , taking care that $n_2 > n_1$ [2 marks], and denote it by y_2 . Repeating this procedure, we obtain a subsequence (y_k) of the sequence x_n such that y_k lies in an interval of length $2^{-N}L$ for all $k \geq N$. Clearly, (y_k) is a Cauchy sequence [3 marks].
 - (c) [Thought part.] The procedure works just as well for $[a, b] \cap \mathbb{Q}$, but it does not follow the set is compact. (Since $[a, b] \cap \mathbb{Q}$ is not complete, the Cauchy sequence does not necessarily converge to a point in $[a, b] \cap \mathbb{Q}$.) [2 marks for stating whether it works or not, 2 marks for completing the job.]
 - (d) [Basic definition/result.] The set S is bounded if there exists an element x and a number r > 0 such that $S \subseteq B_r(x)$. A subset of \mathbb{R}^n (with Euclidean metric) is compact iff it is closed and bounded. [2 marks for definition of bounded, 3 marks for relevant result.]
 - (e) [(i) standard result; (ii) and (iii) unseen.] (i) True [1 mark], (ii) false [1 mark] (e.g., $A = [0, \infty)$ and f(x) = 1/(1+|x|)) [1 mark], and (iii) true [2 marks] (A is contained in a closed interval; f is continuous and hence bounded on that interval); alternatively 2 marks for "false", provided it was accompanied by a counterexample in which f is continuous on A. (I had intended f to be continuous just on A.)