MTH6126 MAY 2011 EXAMINATION: SPECIMEN SOLUTIONS

MARK JERRUM

Q1 [Basic definition plus easy examples/counterexamples.] For all $x, y, z \in X$: (M1) $\varrho(x, y) \geq 0$ with equality iff $x=y$; (M2) $\varrho(x, y)=\varrho(y, x)$, and (M3) $\varrho(x, z) \leq$ $\varrho(x, y)+\varrho(y, z)$. [1 mark each.]
f_{1} is not a metric as it violates $\mathrm{M} 2(f(a, b) \neq f(b, a)) ; f_{2}$ is not a metric as it violates M1 $(f(c, c) \neq 0) ; f_{3}$ is a metric; and f_{4} is not a metric as it violates M3 $(f(a, c) \not \leq f(a, b)+f(b, c))$. [1 mark for each yes/no, and 1 additional mark for the violated axiom.]
Q2 [Basic definition plus easy examples.]
(a) E.g., f is continuous at $\alpha \in \mathbb{R}$ if, for every $\varepsilon>0$, there exists $\delta>0$ such that $f\left(B_{\delta}^{o}(\alpha)\right) \subseteq B_{\varepsilon}^{\sigma}(f(\alpha)) .\left(B_{\delta}^{\varrho}(\alpha)\right)$ is the ball in (X, ϱ) of radius δ centered at α, etc.) f is continuous if it is continuous at all $\alpha \in X$. (Definition in terms of images of convergent sequences also fine.) [4 marks.]
(b) (i) The only continuous functions are the constant function a and the constant function b. [3 marks.]
(ii) Any function from $\{a, b\}$ to \mathbb{R} is continuous. [3 marks.]

Q3 (a) [Basic definition.] $d_{\infty}(f, g)=\sup _{x \in[0, \pi]}|f(x)-g(x)|$. [4 marks.]
(b) [(ii) and (iv) are from coursework; (i) and (iii) unseen.]
(i) Does not converge.
(ii) Converges to the identity function.
(iii) Converges to the zero function.
(iv) Does not converge. (Converges pointwise only.) [1 mark for each yes/no, and 1 additional mark for the limit function.]
Q4 (a) [Basic definitions in the first two parts.] A sequence $\left(x_{n}\right)$ is Cauchy if, for all $\varepsilon>0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\varrho\left(x_{n}, x_{m}\right)<\varepsilon$ for all $n, m \geq N_{\varepsilon}$. [2 marks.]
(b) (X, ϱ) is complete if every Cauchy sequence in (X, ϱ) converges to a point in X. [2 marks.]
(c) [Something similar to (ii) and (iii) in coursework.]
(i) Complete. (A is a closed subset of a complete space \mathbb{R}.)
(ii) Not complete. (The sequence $x_{n}=1 / n$ is a Cauchy sequence that converges in \mathbb{R} to 0 , but $0 \notin A$.)
(iii) Complete. (The complement of A is a union of open intervals and hence open. Thus A a closed subset of \mathbb{R}).
[1 mark for each yes/no answer, and an additional 1 mark for the explanation.]

[^0]Q5 (a) [Basic definition.] $B_{r}(\alpha)=\{x: \varrho(x, \alpha)<r\}$. [3 marks.] A set S is open if, for all $x \in S$, there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq S$. [3 marks.]
(b) [Bookwork.] Let $x \in S$ be arbitrary. Then $x \in A_{\omega}$ for some $\omega \in \Omega$. As A_{ω} is open, there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq A_{\omega} \subseteq S$. Hence S is open. [4 marks.]
Let $x \in A_{1} \cap A_{2}$ be arbitrary. Since A_{1} is open, there is a ball $B_{r_{1}}(x)$ contained in A_{1}; similarly, there is a ball $B_{r_{2}}(x)$ contained in A_{2}. Let $r=\min \left\{r_{1}, r_{2}\right\}$; then the ball $B_{r}(x)$ is contained in $A_{1} \cap A_{2}$. [4 marks.]
(c) [This metric appeared in coursework.] For any $a \in \mathbb{R}$ the ball $B_{1}((a, \omega))$ in $\left(\mathbb{R}^{2}, d^{*}\right)$ is the set $(a-1, a+1) \times\{\omega\}$. (A point p is in $B_{1}((a, \omega))$ iff $d^{*}\left((a, \omega),\left(p_{1}, p_{2}\right)<1\right.$. From the definition of d^{*}, the letter condition holds iff $p_{2}=\omega$ and $\left|p_{1}-a\right|<1$.) Then A_{ω} is the union of open balls $(-2,0) \times\{\omega\}$, $(-1,1) \times\{\omega\}$ and $(0,2) \times\{\omega\}$, and hence open. [4 marks for saying what an open ball in the metric looks like, and 4 marks for completing the job.]
(d) [Easy consequence of (b) \& (c).]

$$
(-2,2) \times[-2,2]=\bigcup_{\omega \in[-2,2]} A_{\omega} .
$$

The set in question is the union of open sets and hence open. [3 marks.]
(e) [Easy adaptation of a standard example from \mathbb{R}.$] E.g., A_{n}=(-1-1 / n, 1+$ $1 / n) \times\{0\}$. For every n this set is open, by part (c). The intersection $\bigcap_{n \in \mathbb{N}} A_{n}$ is the set $S=[-1,1] \times\{0\}$. This set is not open. Consider the point $(1,0) \in S$. For all $\varepsilon>0$ the ball $B_{\varepsilon}((1,0))$ is not contained in S : e.g., the point $(1+\varepsilon / 2,0)$ is in the ball but not in S. (Justification not required.) [5 marks.]
Q6 (a) [Basic definition.] $f^{-1}(A)=\{x \in X: f(x) \in A\}$. [4 marks.]
(b) [Bookwork.] Assume that the inverse image of any open set is open. Let $x \in X, \varepsilon>0$ be arbitrary, and let $B_{\varepsilon}(y)$ be an open ball centred at $y=$ $f(x) \in Y$ of radius ε. The inverse image $f^{-1}\left(B_{\varepsilon}(y)\right)$ of the open ball is an open set [3 marks] that contains the point x (since $y=f(x)$ is certainly a member of $\left.B_{\varepsilon}(y)\right)$ [2 marks]. Therefore there exists a ball $B_{\delta}(x)$ about x such that $B_{\delta}(x) \subseteq f^{-1}\left(B_{\varepsilon}(y)\right)$ [3 marks] or, equivalently, $f\left(B_{\delta}(x)\right) \subseteq B_{\varepsilon}(y)$ [2 marks]. Since x, ε were arbitrary, it follows that f is continuous.
(c) [Students have seen this function before. Part (i) is unseen, part (ii) is from coursework.]
(i) If $x=0$ or $y=0$ then $f(x, y)=0$; otherwise $f(x, y) \neq 0$. Thus $S=f^{-1}(\mathbb{R} \backslash\{0\})$ contains every point of \mathbb{R}^{2} except the axes, i.e., $S=\{(x, y): x \neq 0$ and $y \neq 0\}$. The set S is open since, for every point $(x, y) \in S$, the ball $B_{\varepsilon}((x, y))$ is contained in S, where $\varepsilon=$ $\min \{|x|,|y|\}$. [4 marks for description of inverse image, 2 for open/not open, 2 marks for justification.]
(ii) $S=\left\{(x, y): f(x, y)<\frac{1}{2}\right\}$. Suppose $(x, y) \neq(0,0)$. Then

$$
\begin{aligned}
f(x, y)<\frac{1}{2} & \Longleftrightarrow x y /\left(x^{2}+y^{2}\right)<\frac{1}{2} \\
& \Longleftrightarrow x^{2}+y^{2}-2 x y>0 \\
& \Longleftrightarrow(x-y)^{2}>0 \\
& \Longleftrightarrow x \neq y
\end{aligned}
$$

Also, $f(0,0)=0<\frac{1}{2}$, so $(0,0) \in S$. Summarising, $S=\{(x, y)$: $x \neq y \vee x=y=0\}$. This set is not open, since the ball $B_{\varepsilon}((0,0))$ is contained in the set for no $\varepsilon>0$. [4 marks for description of inverse image, 2 for open/not open, 2 marks for justification.]
Q7 (a) [Basic definition.] K is compact if every sequence of points from K has a subsequence converging to a limit in K.
(b) [Bookwork.] Let $\left(x_{n}\right)$ be an arbitrary sequence of numbers lying in a closed interval $[a, b]$. Let us split $[a, b]$ into the union of two intervals $[a,(a+b) / 2]$ and $[(a+b) / 2, b]$ of length $L / 2$, where $L=b-a$ [3 marks]. At least one of these intervals contains infinitely many elements x_{n} of our sequence [2 marks]. Let us choose one of these elements, say $x_{n_{1}}$, and denote it by y_{1} [2 marks]. Now we split the interval of length $L / 2$ which contains infinitely many elements x_{n} into the union of two intervals of length $L / 4$. Again, at least one of these intervals contains infinitely many elements of x_{n}. We choose one of these elements, say $x_{n_{2}}$, taking care that $n_{2}>n_{1}$ [2 marks], and denote it by y_{2}. Repeating this procedure, we obtain a subsequence $\left(y_{k}\right)$ of the sequence x_{n} such that y_{k} lies in an interval of length $2^{-N} L$ for all $k \geq N$. Clearly, $\left(y_{k}\right)$ is a Cauchy sequence [3 marks].
(c) [Thought part.] The procedure works just as well for $[a, b] \cap \mathbb{Q}$, but it does not follow the set is compact. (Since $[a, b] \cap \mathbb{Q}$ is not complete, the Cauchy sequence does not necessarily converge to a point in $[a, b] \cap \mathbb{Q}$.) [2 marks for stating whether it works or not, 2 marks for completing the job.]
(d) [Basic definition/result.] The set S is bounded if there exists an element x and a number $r>0$ such that $S \subseteq B_{r}(x)$. A subset of \mathbb{R}^{n} (with Euclidean metric) is compact iff it is closed and bounded. [2 marks for definition of bounded, 3 marks for relevant result.]
(e) [(i) standard result; (ii) and (iii) unseen.] (i) True [1 mark], (ii) false [1 mark] (e.g., $A=[0, \infty)$ and $f(x)=1 /(1+|x|))$ [1 mark], and (iii) true [2 marks] $(A$ is contained in a closed interval; f is continuous and hence bounded on that interval); alternatively 2 marks for "false", provided it was accompanied by a counterexample in which f is continuous on A. (I had intended f to be continuous just on A.)

[^0]: Date: 31st December 2010.

