MTH6126 MAY 2010 EXAMINATION: SPECIMEN SOLUTIONS

MARK JERRUM

(1) In addition to ε/δ , I would accept: (s_n) converges to α iff $\varrho(s_n, \alpha) \to 0$ as $n \to \infty$. Metrics ϱ and σ are equivalent iff every sequence converging to some point α in (X, ϱ) also converges to α in (Y, σ) , and vice versa. [Standard definitions.]

Consider the sequence (s_n) given by $s_n = (0, 1/n)$. Note that $d_2(s_n, (0, 0)) = 1/n$ but $d^*(s_n, (0, 0)) = 1$, so (s_n) converges to (0, 0) in (\mathbb{R}^2, d_2) but not in (\mathbb{R}_2, d^*) . [Students have seen the metric d^* before, if not this question.]

- (2) S is open iff for all $x \in X$ there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq S$. [Standard definition.]
 - (a) Not open. Let $c_1 : (0,1) \to \mathbb{R}$ be the constant function 1. Then $c_1 \in S$, since $\sup_{x \in (0,1)} |c_1(x)| = 1$. However, for all $\varepsilon > 0$, the open ball $B_{\varepsilon}(c_1)$ centred at c_1 contains the constant function $1 + \varepsilon/2$, which is outside S.
 - (b) Open. Suppose $f \in S$ and let $\varepsilon = 1 \sup_{x \in (0,1)} |f(x)| > 0$. Then the ball $B_{\varepsilon}(f)$ is contained in S. To see this, note that if $g \in B_{\varepsilon}(f)$, then

 $\sup_{x \in (0,1)} |g(x)| \le \sup_{x \in (0,1)} (|g(x) - f(x)| + |f(x)|) < \varepsilon + (1 - \varepsilon) = 1.$

- (c) Not open. Consider the identity function I(x) = x. Then $\sup_{x \in (0,1)} |I(x)| = 1$, and we can argue as in (a).
- [These are unseen, but straightforward, except possibly (c).]
- (3) The function f is continuous at α iff, for every sequence (x_n) converging to α in (X, ϱ) , the sequence $f(x_n)$ converges to $f(\alpha)$ in (Y, σ) . [Bookwork.]

Consider the sequence $s_n = (1/n, 1/n)$, which converges to (0, 0) in \mathbb{R}^2 with the Euclidean metric. Observe that $f(s_n) = f(1/n, 1/n) = 1$, so $f(s_n) \to 1 \neq 0 = f(0, 0)$ in \mathbb{R} . [Students have seen this example, without the factor 2, in the course.]

No. (The sequence $t_n = (1/n, 0)$ converges to (0, 0) in \mathbb{R}^2 , and $f(t_n) = 0$ converges to 0 in \mathbb{R} . So one of (s_n) or (t_n) will always be a counterexample.) [Unseen, but implicit in the discussion of the example in the course.]

- (4) S is compact iff every sequence in S has a convergent subsequence. [Standard definition.]
 - (a) Compact. It is a closed, bounded subset of \mathbb{R}^2 and hence compact by Heine-Borel.
 - (b) Not compact. The sequence $s_n = (1 1/n, 0)$ in S converges to $(1, 0) \notin S$, and so does any subsequence.
 - (c) Not compact. The sequence $s_n = (0, n)$ has the property that $d_2(s_n, s_m) \ge 1$ for all n, m with $n \ne m$. So no subsequence of (s_n) is Cauchy, and hence no subsequence is convergent.

Date: 31st December 2009.

MARK JERRUM

(d) Not compact. As for (c).

[I'm not aware the students have seen exactly these examples, but they have seen similar.]

- (5) (a) $B_r(\alpha) = \{x : \rho(\alpha, x) < r\}$. Suppose $x \in B_r(\alpha)$. Then $\rho(\alpha, x) = r \varepsilon$ for some $\varepsilon > 0$. Consider the ball $B_{\varepsilon}(x)$, and let $y \in B_{\varepsilon}(x)$ be arbitrary. By the triangle inequality, $\rho(\alpha, y) \le \rho(\alpha, x) + \rho(x, y) < 1 - \varepsilon + \varepsilon = 1$. So $y \in B_r(\alpha)$. But y was an arbitrary point in $B_{\varepsilon}(x)$. [Bookwork.]
 - (b) Let $x \in S$ be arbitrary. There exists $\omega \in \Omega$ with $x \in A_{\omega}$. Since A_{ω} is open, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A_{\omega} \subseteq S$. But $x \in S$ was arbitrary, so S is open. [Bookwork.]
 - (c) Suppose A is open. For each $x \in A$ choose $\varepsilon(x)$ so that $B_{\varepsilon(x)}(x) \subseteq A$. Clearly, $A = \bigcup_{x \in X} B_{\varepsilon(x)}(x)$. Conversely, the union of any collection of open balls is open by (a) and (b). [Bookwork.]
 - (d) A is the smallest (with respect to set inclusion) closed set containing A. [Standard definition.]
 - (e) A* is an intersection of a collection of closed sets and hence closed. It clearly contains A, and hence contains the smallest closed set containing A. [Unseen.]
 - (f) $A = \{0, 1\}$. $\overline{A} = A = \{0, 1\}$ since A is closed, whereas $A^* = [0, 1]$. [Unseen.]
- (6) (a) For all $x \in [0, \pi]$, for all $\varepsilon > 0$, there exists $N_{x,\varepsilon}$ such that $|f_n(x) f(x)| < \varepsilon$ for all $n \ge N_{x,\varepsilon}$. Uniform convergence implies pointwise convergence. [Standard definition.]
 - (b) f is the constant 0 function. Then

$$d_{\infty}(f_n, f) = \sup_{x \in [0,\pi]} |f_n(x) - f(x)| = \sup_{x \in [0,\pi]} |\sin(x/n)|$$

$$\leq \sup_{x \in [0,\pi]} |x/n| = \pi/n.$$

So $d_{\infty}(f_n, f) \to 0$ as $n \to \infty$. [Appeared in coursework.]

- (c) f(x) = 1 if $x = \pi/2$; f(x) = 0 otherwise. When $x = \pi/2$, $f_n(x) = (\sin(\pi/2))^n = 1^n = 1$. Hence $f_n(\pi/2) \to 1$ as $n \to \infty$. If $x \neq \pi/2$, $0 \leq f_n(x) < 1$ and so $f_n(x) = (\sin(\pi/2))^n \to 0$ as $n \to \infty$. [Something similar in coursework.]
- (d) Suppose $\alpha \in [0, \pi]$ and $\varepsilon > 0$. Since $f_n \to f$ we can choose n such that $d_{\infty}(f_n, f) \leq \varepsilon/3$, i.e., $|f_n(x) f(x)| \leq \varepsilon/3$ for all $x \in [0, \pi]$. Since f_n is continuous, there exists $\delta > 0$ such that $|f_n(x) f_n(\alpha)| < \varepsilon/3$ whenever $|x \alpha| < \delta$. So, by the triangle inequality,

$$|f(x) - f(\alpha)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(\alpha)| + |f_n(\alpha) - f(\alpha)|$$

$$< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon$$

whenever $|x - \alpha| < \delta$. [Bookwork.]

- (e) f_n are all continuous. If convergence was uniform then the limit would be continuous also, but it is not. [Simple observation.]
- (7) (a) (x_n) is Cauchy iff for all $\varepsilon > 0$ there exists N_{ε} such that $\varrho(x_n, x_m) < \varepsilon$ for all $n, m \ge N_{\varepsilon}$. (X, ϱ) is complete if every Cauchy sequence (x_n) converges to a limit in X. [Standard definitions.]

- (b) Suppose (x_n) is any Cauchy sequence in (A, ϱ) . Since (x_n) is also a Cauchy sequence in (X, ϱ) , and (X, ϱ) is complete, (x_n) converges to a limit in X, say $\alpha \in X$. We just need to show that $\alpha \in A$. Suppose not. The sequence (x_n) witnesses the fact that α is a limit point of A. But A is closed and hence contains all its limit points, a contradiction. [Bookwork.]
- (c) (i) Complete. A is closed subset of the complete space \mathbb{R} , so is closed by (b).
 - (ii) Complete. Ditto. (Observe that the complement of A is a union of open intervals, and hence open. A itself is therefore closed.)
 - (iii) Not complete. The sequence x_n defined by $x_n = 2^{-n}$ is Cauchy, and converges to $0 \notin A$.

[Variations of examples that have appeared in the course.]

- (d) No. $[1,\infty)$ is complete as a subspace of \mathbb{R} with the usual metric; however its image under $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 1/x is (0,1] which is not complete. [Unseen.]
- (e) Yes. [0, 1] is compact and so its image under a continuous function is compact. A compact space is complete. [Unseen.]