
MTH6126 MAY 2010 EXAMINATION: SPECIMEN SOLUTIONS

MARK JERRUM

(1) In addition to ε/δ, I would accept: (sn) converges to α iff %(sn, α) → 0 as n →∞.
Metrics % and σ are equivalent iff every sequence converging to some point α in
(X, %) also converges to α in (Y, σ), and vice versa. [Standard definitions.]

Consider the sequence (sn) given by sn = (0, 1/n). Note that d2(sn, (0, 0)) =
1/n but d∗(sn, (0, 0)) = 1, so (sn) converges to (0, 0) in (R2, d2) but not in
(R2, d

∗). [Students have seen the metric d∗ before, if not this question.]
(2) S is open iff for all x ∈ X there exists ε > 0 such that Bε(x) ⊆ S. [Standard

definition.]
(a) Not open. Let c1 : (0, 1) → R be the constant function 1. Then c1 ∈ S,

since supx∈(0,1) |c1(x)| = 1. However, for all ε > 0, the open ball Bε(c1)
centred at c1 contains the constant function 1 + ε/2, which is outside S.

(b) Open. Suppose f ∈ S and let ε = 1 − supx∈(0,1) |f(x)| > 0. Then the ball
Bε(f) is contained in S. To see this, note that if g ∈ Bε(f), then

sup
x∈(0,1)

|g(x)| ≤ sup
x∈(0,1)

(|g(x)− f(x)|+ |f(x)|) < ε + (1− ε) = 1.

(c) Not open. Consider the identity function I(x) = x. Then supx∈(0,1) |I(x)| =
1, and we can argue as in (a).

[These are unseen, but straightforward, except possibly (c).]
(3) The function f is continuous at α iff, for every sequence (xn) converging to α in

(X, %), the sequence f(xn) converges to f(α) in (Y, σ). [Bookwork.]
Consider the sequence sn = (1/n, 1/n), which converges to (0, 0) in R2 with

the Euclidean metric. Observe that f(sn) = f(1/n, 1/n) = 1, so f(sn) → 1 6=
0 = f(0, 0) in R. [Students have seen this example, without the factor 2, in the
course.]

No. (The sequence tn = (1/n, 0) converges to (0, 0) in R2, and f(tn) = 0
converges to 0 in R. So one of (sn) or (tn) will always be a counterexample.)
[Unseen, but implicit in the discussion of the example in the course.]

(4) S is compact iff every sequence in S has a convergent subsequence. [Standard
definition.]
(a) Compact. It is a closed, bounded subset of R2 and hence compact by Heine-

Borel.
(b) Not compact. The sequence sn = (1− 1/n, 0) in S converges to (1, 0) /∈ S,

and so does any subsequence.
(c) Not compact. The sequence sn = (0, n) has the property that d2(sn, sm) ≥ 1

for all n, m with n 6= m. So no subsequence of (sn) is Cauchy, and hence no
subsequence is convergent.
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(d) Not compact. As for (c).
[I’m not aware the students have seen exactly these examples, but they have seen
similar.]

(5) (a) Br(α) = {x : %(α, x) < r}. Suppose x ∈ Br(α). Then %(α, x) = r − ε for
some ε > 0. Consider the ball Bε(x), and let y ∈ Bε(x) be arbitrary. By the
triangle inequality, %(α, y) ≤ %(α, x)+%(x, y) < 1−ε+ε = 1. So y ∈ Br(α).
But y was an arbitrary point in Bε(x). [Bookwork.]

(b) Let x ∈ S be arbitrary. There exists ω ∈ Ω with x ∈ Aω. Since Aω is open,
there exists ε > 0 such that Bε(x) ⊆ Aω ⊆ S. But x ∈ S was arbitrary, so
S is open. [Bookwork.]

(c) Suppose A is open. For each x ∈ A choose ε(x) so that Bε(x)(x) ⊆ A.
Clearly, A =

⋃
x∈X Bε(x)(x). Conversely, the union of any collection of open

balls is open by (a) and (b). [Bookwork.]
(d) A is the smallest (with respect to set inclusion) closed set containing A.

[Standard definition.]
(e) A∗ is an intersection of a collection of closed sets and hence closed. It

clearly contains A, and hence contains the smallest closed set containing A.
[Unseen.]

(f) A = {0, 1}. A = A = {0, 1} since A is closed, whereas A∗ = [0, 1]. [Unseen.]
(6) (a) For all x ∈ [0, π], for all ε > 0, there exists Nx,ε such that |fn(x)− f(x)| <

ε for all n ≥ Nx,ε. Uniform convergence implies pointwise convergence.
[Standard definition.]

(b) f is the constant 0 function. Then

d∞(fn, f) = sup
x∈[0,π]

|fn(x)− f(x)| = sup
x∈[0,π]

| sin(x/n)|

≤ sup
x∈[0,π]

|x/n| = π/n.

So d∞(fn, f) → 0 as n →∞. [Appeared in coursework.]
(c) f(x) = 1 if x = π/2; f(x) = 0 otherwise. When x = π/2, fn(x) =

(sin(π/2))n = 1n = 1. Hence fn(π/2) → 1 as n → ∞. If x 6= π/2,
0 ≤ fn(x) < 1 and so fn(x) = (sin(π/2))n → 0 as n → ∞. [Something
similar in coursework.]

(d) Suppose α ∈ [0, π] and ε > 0. Since fn → f we can choose n such that
d∞(fn, f) ≤ ε/3, i.e., |fn(x) − f(x)| ≤ ε/3 for all x ∈ [0, π]. Since fn is
continuous, there exists δ > 0 such that |fn(x) − fn(α)| < ε/3 whenever
|x− α| < δ. So, by the triangle inequality,

|f(x)− f(α)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(α)|+ |fn(α)− f(α)|
< ε/3 + ε/3 + ε/3 = ε

whenever |x− α| < δ. [Bookwork.]
(e) fn are all continuous. If convergence was uniform then the limit would be

continuous also, but it is not. [Simple observation.]
(7) (a) (xn) is Cauchy iff for all ε > 0 there exists Nε such that %(xn, xm) < ε for

all n, m ≥ Nε. (X, %) is complete if every Cauchy sequence (xn) converges
to a limit in X. [Standard definitions.]
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(b) Suppose (xn) is any Cauchy sequence in (A, %). Since (xn) is also a Cauchy
sequence in (X, %), and (X, %) is complete, (xn) converges to a limit in X,
say α ∈ X. We just need to show that α ∈ A. Suppose not. The sequence
(xn) witnesses the fact that α is a limit point of A. But A is closed and
hence contains all its limit points, a contradiction. [Bookwork.]

(c) (i) Complete. A is closed subset of the complete space R, so is closed
by (b).

(ii) Complete. Ditto. (Observe that the complement of A is a union of
open intervals, and hence open. A itself is therefore closed.)

(iii) Not complete. The sequence xn defined by xn = 2−n is Cauchy, and
converges to 0 /∈ A.

[Variations of examples that have appeared in the course.]
(d) No. [1,∞) is complete as a subspace of R with the usual metric; however

its image under f : R → R defined by f(x) = 1/x is (0, 1] which is not
complete. [Unseen.]

(e) Yes. [0, 1] is compact and so its image under a continuous function is com-
pact. A compact space is complete. [Unseen.]


