MTH6126 MAY 2010 EXAMINATION: SPECIMEN SOLUTIONS

MARK JERRUM

(1) In addition to ε / δ, I would accept: $\left(s_{n}\right)$ converges to α iff $\varrho\left(s_{n}, \alpha\right) \rightarrow 0$ as $n \rightarrow \infty$. Metrics ϱ and σ are equivalent iff every sequence converging to some point α in (X, ϱ) also converges to α in (Y, σ), and vice versa. [Standard definitions.]

Consider the sequence $\left(s_{n}\right)$ given by $s_{n}=(0,1 / n)$. Note that $d_{2}\left(s_{n},(0,0)\right)=$ $1 / n$ but $d^{*}\left(s_{n},(0,0)\right)=1$, so $\left(s_{n}\right)$ converges to $(0,0)$ in $\left(\mathbb{R}^{2}, d_{2}\right)$ but not in $\left(\mathbb{R}_{2}, d^{*}\right)$. [Students have seen the metric d^{*} before, if not this question.]
(2) S is open iff for all $x \in X$ there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq S$. [Standard definition.]
(a) Not open. Let $c_{1}:(0,1) \rightarrow \mathbb{R}$ be the constant function 1 . Then $c_{1} \in S$, since $\sup _{x \in(0,1)}\left|c_{1}(x)\right|=1$. However, for all $\varepsilon>0$, the open ball $B_{\varepsilon}\left(c_{1}\right)$ centred at c_{1} contains the constant function $1+\varepsilon / 2$, which is outside S.
(b) Open. Suppose $f \in S$ and let $\varepsilon=1-\sup _{x \in(0,1)}|f(x)|>0$. Then the ball $B_{\varepsilon}(f)$ is contained in S. To see this, note that if $g \in B_{\varepsilon}(f)$, then

$$
\sup _{x \in(0,1)}|g(x)| \leq \sup _{x \in(0,1)}(|g(x)-f(x)|+|f(x)|)<\varepsilon+(1-\varepsilon)=1
$$

(c) Not open. Consider the identity function $I(x)=x$. Then $\sup _{x \in(0,1)}|I(x)|=$ 1 , and we can argue as in (a).
[These are unseen, but straightforward, except possibly (c).]
(3) The function f is continuous at α iff, for every sequence $\left(x_{n}\right)$ converging to α in (X, ϱ), the sequence $f\left(x_{n}\right)$ converges to $f(\alpha)$ in (Y, σ). [Bookwork.]

Consider the sequence $s_{n}=(1 / n, 1 / n)$, which converges to $(0,0)$ in \mathbb{R}^{2} with the Euclidean metric. Observe that $f\left(s_{n}\right)=f(1 / n, 1 / n)=1$, so $f\left(s_{n}\right) \rightarrow 1 \neq$ $0=f(0,0)$ in \mathbb{R}. [Students have seen this example, without the factor 2 , in the course.]

No. (The sequence $t_{n}=(1 / n, 0)$ converges to $(0,0)$ in \mathbb{R}^{2}, and $f\left(t_{n}\right)=0$ converges to 0 in \mathbb{R}. So one of $\left(s_{n}\right)$ or $\left(t_{n}\right)$ will always be a counterexample.) [Unseen, but implicit in the discussion of the example in the course.]
(4) S is compact iff every sequence in S has a convergent subsequence. [Standard definition.]
(a) Compact. It is a closed, bounded subset of \mathbb{R}^{2} and hence compact by HeineBorel.
(b) Not compact. The sequence $s_{n}=(1-1 / n, 0)$ in S converges to $(1,0) \notin S$, and so does any subsequence.
(c) Not compact. The sequence $s_{n}=(0, n)$ has the property that $d_{2}\left(s_{n}, s_{m}\right) \geq 1$ for all n, m with $n \neq m$. So no subsequence of $\left(s_{n}\right)$ is Cauchy, and hence no subsequence is convergent.
(d) Not compact. As for (c).
[I'm not aware the students have seen exactly these examples, but they have seen similar.]
(5) (a) $B_{r}(\alpha)=\{x: \varrho(\alpha, x)<r\}$. Suppose $x \in B_{r}(\alpha)$. Then $\varrho(\alpha, x)=r-\varepsilon$ for some $\varepsilon>0$. Consider the ball $B_{\varepsilon}(x)$, and let $y \in B_{\varepsilon}(x)$ be arbitrary. By the triangle inequality, $\varrho(\alpha, y) \leq \varrho(\alpha, x)+\varrho(x, y)<1-\varepsilon+\varepsilon=1$. So $y \in B_{r}(\alpha)$. But y was an arbitrary point in $B_{\varepsilon}(x)$. [Bookwork.]
(b) Let $x \in S$ be arbitrary. There exists $\omega \in \Omega$ with $x \in A_{\omega}$. Since A_{ω} is open, there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq A_{\omega} \subseteq S$. But $x \in S$ was arbitrary, so S is open. [Bookwork.]
(c) Suppose A is open. For each $x \in A$ choose $\varepsilon(x)$ so that $B_{\varepsilon(x)}(x) \subseteq A$. Clearly, $A=\bigcup_{x \in X} B_{\varepsilon(x)}(x)$. Conversely, the union of any collection of open balls is open by (a) and (b). [Bookwork.]
(d) \bar{A} is the smallest (with respect to set inclusion) closed set containing A. [Standard definition.]
(e) A^{*} is an intersection of a collection of closed sets and hence closed. It clearly contains A, and hence contains the smallest closed set containing A. [Unseen.]
(f) $A=\{0,1\} . \bar{A}=A=\{0,1\}$ since A is closed, whereas $A^{*}=[0,1]$. [Unseen.]
(6) (a) For all $x \in[0, \pi]$, for all $\varepsilon>0$, there exists $N_{x, \varepsilon}$ such that $\left|f_{n}(x)-f(x)\right|<$ ε for all $n \geq N_{x, \varepsilon}$. Uniform convergence implies pointwise convergence. [Standard definition.]
(b) f is the constant 0 function. Then

$$
\begin{aligned}
d_{\infty}\left(f_{n}, f\right) & =\sup _{x \in[0, \pi]}\left|f_{n}(x)-f(x)\right|=\sup _{x \in[0, \pi]}|\sin (x / n)| \\
& \leq \sup _{x \in[0, \pi]}|x / n|=\pi / n .
\end{aligned}
$$

So $d_{\infty}\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$. [Appeared in coursework.]
(c) $f(x)=1$ if $x=\pi / 2 ; f(x)=0$ otherwise. When $x=\pi / 2, f_{n}(x)=$ $(\sin (\pi / 2))^{n}=1^{n}=1$. Hence $f_{n}(\pi / 2) \rightarrow 1$ as $n \rightarrow \infty$. If $x \neq \pi / 2$, $0 \leq f_{n}(x)<1$ and so $f_{n}(x)=(\sin (\pi / 2))^{n} \rightarrow 0$ as $n \rightarrow \infty$. [Something similar in coursework.]
(d) Suppose $\alpha \in[0, \pi]$ and $\varepsilon>0$. Since $f_{n} \rightarrow f$ we can choose n such that $d_{\infty}\left(f_{n}, f\right) \leq \varepsilon / 3$, i.e., $\left|f_{n}(x)-f(x)\right| \leq \varepsilon / 3$ for all $x \in[0, \pi]$. Since f_{n} is continuous, there exists $\delta>0$ such that $\left|f_{n}(x)-f_{n}(\alpha)\right|<\varepsilon / 3$ whenever $|x-\alpha|<\delta$. So, by the triangle inequality,

$$
\begin{aligned}
|f(x)-f(\alpha)| & \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(\alpha)\right|+\left|f_{n}(\alpha)-f(\alpha)\right| \\
& <\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon
\end{aligned}
$$

whenever $|x-\alpha|<\delta$. [Bookwork.]
(e) f_{n} are all continuous. If convergence was uniform then the limit would be continuous also, but it is not. [Simple observation.]
(7) (a) $\left(x_{n}\right)$ is Cauchy iff for all $\varepsilon>0$ there exists N_{ε} such that $\varrho\left(x_{n}, x_{m}\right)<\varepsilon$ for all $n, m \geq N_{\varepsilon} .(X, \varrho)$ is complete if every Cauchy sequence $\left(x_{n}\right)$ converges to a limit in X. [Standard definitions.]
(b) Suppose $\left(x_{n}\right)$ is any Cauchy sequence in (A, ϱ). Since $\left(x_{n}\right)$ is also a Cauchy sequence in (X, ϱ), and (X, ϱ) is complete, $\left(x_{n}\right)$ converges to a limit in X, say $\alpha \in X$. We just need to show that $\alpha \in A$. Suppose not. The sequence $\left(x_{n}\right)$ witnesses the fact that α is a limit point of A. But A is closed and hence contains all its limit points, a contradiction. [Bookwork.]
(c) (i) Complete. A is closed subset of the complete space \mathbb{R}, so is closed by (b).
(ii) Complete. Ditto. (Observe that the complement of A is a union of open intervals, and hence open. A itself is therefore closed.)
(iii) Not complete. The sequence x_{n} defined by $x_{n}=2^{-n}$ is Cauchy, and converges to $0 \notin A$.
[Variations of examples that have appeared in the course.]
(d) No. $[1, \infty)$ is complete as a subspace of \mathbb{R} with the usual metric; however its image under $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=1 / x$ is $(0,1]$ which is not complete. [Unseen.]
(e) Yes. $[0,1]$ is compact and so its image under a continuous function is compact. A compact space is complete. [Unseen.]

