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SECTION A

This section carries 40 marks and each question carries 10 marks. You should
attempt ALL FOUR questions.

A1. Denote by B(S) the set of bounded real-valued functions on a set S. Define % :
B(S)2 → R by

%(f, g) = sup
x∈S

|f(x)− g(x)|

for all f, g ∈ B(S). Prove that % satisfies the triangle inequality. Why is it necessary
to assume that the functions in B(S) are bounded? Provide an illustrative example to
show that, without this assumption, % may fail to be well-defined.

A2. Suppose (X, %) is a metric space. Describe an open ball in (X, %). Explain what it
means for a set A ⊆ X to be open and what it means for it to be closed.

Now specialise (X, %) to be R with the usual metric. Denote by A⊕B the symmetric
difference of sets A, B ⊆ X, that is to say A⊕B = (A \B) ∪ (B \A). Give examples
of open sets ∅ ⊂ A, B ⊂ R such that (i) A ⊕ B is open but not closed, (ii) A ⊕ B is
closed but not open, and (iii) A⊕B is neither open nor closed. Briefly explain each of
your answers.

A3. Explain what it means for a metric space (X, %) to be complete.

Which of the following subsets of R are complete when considered as subspaces of R
with the usual metric?

(a) (0,∞),

(b) [0,∞),

(c) {n−2 : n = 1, 2, . . .},
(d) {n−2 : n = 1, 2, . . . } ∪ {0}, and

(e) Q ∩ [0, 1].

Briefly justify each of your answers.

A4. Explain what it means for a subset K of a metric space (X, ρ) to be (sequentially)
compact.

Demonstrate from first principles (i.e., directly from the definition) that neither [0,∞)×
[−1, 1] nor (0, 1)× [−1, 1] are compact subsets of R2 with the Euclidean metric.

State a standard theorem from which it may be deduced that [0, 1] × [−1, 1] is a
compact subset of R2.

[Next section overleaf ]
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SECTION B

This section carries 60 marks and each question carries 30 marks. You may
attempt all three questions but only marks for the BEST TWO questions will be
counted.

B1. (a) [8 marks] Suppose (X, %) is a metric space. Define σ : X2 → R by σ(x, y) =√
%(x, y) for all x, y ∈ X. Prove that σ is a metric on X. [Hint: show that√
a + b ≤

√
a +

√
b, for all a, b ≥ 0.]

(b) [5 marks] Define τ : X2 → R by τ(x, y) = %(x, y)2 for all x, y ∈ X. By presenting
a counterexample with |X| = 3, demonstrate that τ may not be a metric on X.

(c) [6 marks] With %, σ as in part (a), prove that a set A ⊆ X is open in (X, σ) if it
is open in (X, %).

(d) [6 marks] Let T : X → X be any injective map from X to itself. Define %′ : X2 →
R by %′(x, y) = %(T (x), T (y)). Prove that %′ is a metric on X.

(e) [5 marks] Are the open sets in (X, %) and (X, %′) necessarily the same? Explain
your answer.

B2. (a) [4 marks] State the condition for a mapping f of a metric space (X, %) to itself to
be a contraction.

(b) [4 marks] State the contraction mapping theorem.

(c) [12 marks] Denote by d1 the Manhattan or `1 metric on R2; that is, d1(x, y) =
|x1 − y1| + |x2 − y2| for all x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2. Prove that
(R2, d1) is a complete metric space. (You may assume that R is complete with
the usual metric.)

(d) [10 marks] Prove that the function f : R2 → R2 defined by f(x1, x2) = (1
2
x2,

1
2
(x1+

1)) is a contraction on (R2, d1). What is the fixed point of f?

[Next question overleaf ]
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B3. Suppose (X, %) and (Y, σ) are metric spaces, and f : X → Y is a map between them.

(a) [4 marks] Explain what it means for f to be continuous.

(b) [10 marks] Suppose f : X → Y is continuous. Let xn be any sequence of points
in X converging to α ∈ X. Prove that f(xn) converges to f(α) in Y .

(c) [8 marks] Again suppose f is continuous, and further suppose K is a compact
subset of X. Prove that the image f(K) of K is compact.

(d) [8 marks] Let L be a subset of Y . Define the inverse image f−1(L) of L. Assume L
is compact and f is continuous. Is f−1(L) necessarily closed? Is f−1(L) necessarily
bounded? Is f−1(L) necessarily compact? Explain your answers.

[Next section overleaf ]
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Specimen solutions
SECTION A

A1. Let f, g, h ∈ B(S). For all x ∈ S, we have

|f(x)− h(x)| ≤ |f(x)− g(x)|+ |g(x)− h(x)| ≤ %(f, g) + %(g, h).

So %(f, g) + %(g, h) is an upper bound on |f(x) − g(x)| for all x ∈ S, and hence is at
least as great as the least upper bound supx∈S |f(x)− h(x)| = %(f, h).

Boundedness ensures that the set {|f(x) − g(x)| : x ∈ S} has a least upper bound.
Suppose S = (0, 1), f(x) = 1/x and g(x) = 0. Then supx∈S |f(x)− g(x)| = ∞.

A2. An open ball in (X, %) is a set of the form Br(α) = {x : %(α, x) < r}, for some α ∈ X
and r > 0. A set A ⊆ X is open if, for every α ∈ X, there exists ε > 0 such that
Bε(α) ⊆ X. A set A is closed if its complement X \ A is open.

If A = (0, 1) B = (2, 3) then A, B are both open. Also, A⊕ B = (0, 1) ∪ (2, 3), which
is open (union of open intervals) but not closed (0 is a limit point lying outside the
set). If A = (0,∞) and B = (0, 1) then A⊕ B = [1,∞) which is closed but not open
(contains no open ball centered at 1). If A = (0, 2) and B = (0, 1), then A⊕B = [1, 2),
which is not open (there is no ball centered at 1 and contained in [1, 2)) and not closed
(2 is a limit point not contained in [1, 2)).

A3. (X, %) is complete iff every Cauchy sequence in X converges to a point in X.

(a) No. The sequence xn = 1/n converges to 0 in R, and 0 /∈ (0, 1].

(b) Yes. [0,∞) is a closed subset of R, which is a complete metric space.

(c) No. Consider the subsequence xn = n−2 and argue as in (a).

(d) Yes. The complement of the set is (−∞, 0) ∪ (1,∞) ∪ (2−2, 1) ∪ (3−2, 2−2) ∪
(4−2, 3−2) ∪ · · · , which is a union of open sets and hence open. Therefore the set
itself is closed. Now argue as in (b).

(e) No. Consider a sequence of rational numbers in [0, 1] converging to 1/
√

2.

A4. K is (sequentially) compact iff every sequence of elements in K contains a subsequence
converging to a point in K.

[This question continues overleaf . . . ]
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Consider the sequence xn = (n, 0) in [0,∞) × [−1, 1]. For all n 6= m, we have ‖xn −
xm‖ ≥ 1. So xn contains no Cauchy subsequence and hence no convergent subsequence.
Consider the sequence xn = (1/(n + 1), 0) in (0, 1)× [−1, 1]. This sequence converges
to the point (0, 0) in R2 and so too does any subsequence. But (0, 0) /∈ (0, 1)× [−1, 1].

Heine-Borel: a subset of Rn is compact iff it is closed and bounded.

SECTION B

B1. (a) [Unseen, though σ(x, y) = min{%(x, y), 1} was set as an exercise.]

• σ(x, x) =
√

%(x, x) =
√

0 = 0; and σ(x, y) =
√

%(x, y) > 0 provided x 6= y.

• σ(x, y) =
√

%(x, y) =
√

%(y, x) = σ(y, x).

• For any a, b ≥ 0, we have a + b ≤ a + 2
√

ab + b. Taking square roots,√
a + b ≤

√
a+

√
b since

√
· is a monotonic function. Then σ(x, y)+σ(y, z) =√

%(x, y) +
√

%(y, z) ≥
√

%(x, y) + %(y, z) ≥
√

%(x, z) = σ(x, z). The final
inequality is by the triangle inequality for %.

(b) [Set as coursework, without the constraint |X| = 3.] X = {a, b, c}, %(a, b) =
%(b, c) = 1 and %(a, c) = 2. Then (X, %) is a metric space, but (X, σ) fails the
triangle inequality: τ(a, b) + τ(b, c) = 2 < 4 = τ(a, c).

(c) [Simple example of equivalent metrics, which is covered in the course.] For r > 0,
x ∈ X, denote by B%

r (x) (resp. Bσ
r (x)) the ball in (X, %) (resp. (X, σ)) of radius

r centered at x. Let A be a set open in (X, %). Take any point x ∈ X. For some
ε > 0 the ball B%

ε (x) is contained in A. B%
ε (x) = Bσ

δ (x) where δ =
√

ε. So there is
a ball Bσ

δ (x) centred at x and contained in A. But x ∈ A was chosen arbitrarily,
and hence A is open in (X, σ).

(d) [Unseen.]

• %′(x, x) = %(T (x), T (x)) = 0; and %′(x, y) = %(T (x), T (y)) > 0 provided x 6= y
(since T is injective).

• %′(x, y) = %(T (x), T (y)) = %(T (y), T (x)) = %′(y, x).

• %′(x, y) + %′(y, z) = %(T (x), T (y)) + %(T (y), T (z)) ≥ %(T (x), T (z)) = %′(x, z).
The final inequality is by the triangle inequality for %.

(e) [Unseen.] No. E.g., (X, %) is R with the usual metric, and T (x) = x− 1 if x < 0,
T (0) = 0, and T (x) = x + 1 if x > 0. Then {0} is an open set in (X, %′) (indeed
it is an open ball), but {0} is not an open set in the usual metric.

B2. (a) [The first two parts are bookwork.] A map f from a metric space (X, %) to itself
is called a contraction if %(f(x), f(y)) ≤ c%(x, y) for some 0 ≤ c < 1 and all
x, y ∈ X.

[This question continues overleaf . . . ]



7

(b) If f is a contraction on a complete metric space then the equation f(x) = x has a
unique solution x and, for any x0 ∈ X, the sequence xn defined by xn = f(xn−1),
for all n > 0, converges to x.

(c) [This was an exercise in the course, but with Euclidean metric in place of d1.]
Suppose (an, bn) is a Cauchy sequence in (R2, d1). Then for all ε > 0 there exists
Nε such that d1((an, bn), (am, bm)) = |am − an|+ |bm − bm| ≤ ε for all n, m ≥ Nε.
Clearly, the sequences an and bn are Cauchy in R (with the same Nε).

Since R is complete, each of these sequences converges to a respective limit in R,
say α and β. We claim that (α, β) is the limit of the original sequence in (R2, d1).
For any ε there exist Aε and Bε such that |an − α| < ε/2 when n ≥ Aε and
|bn − β| < ε/2 when n ≥ Bε. Then

d1

(
(an, bn), (α, β)

)
= |an − α|+ |bn − β| ≤ ε/2 + ε/2 = ε

for all n ≥ max{Aε, Bε}. But ε > 0 was arbitary, so (an, bn) converges to (α, β)
in (R2, d1).

(d) [Fairly routine calculation.] We have

d1(f(x), f(y)) = d1

(
(1

2
x2,

1
2
(x1 + 1)), (1

2
y2,

1
2
(y1 + 1))

)
=

∣∣1
2
(x2 − y2)

∣∣ +
∣∣1
2
(x1 − y1)

∣∣
= 1

2
d1(x, y).

Hence f is a contraction, with c = 1
2
.

The fixed point is given by the solution of the equations x1 = 1
2
x2 and x2 =

1
2
(x1 + 1), which is x1 = 1

3
and x2 = 2

3
. The fixed point is thus x = (1

3
, 2

3
).

B3. (a) [Standard definition.] A map f : X → Y is continuous at α ∈ X if for any ε > 0
there exists δ > 0 such that σ(f(x), f(α)) < ε whenever %(x, α) < δ. The map f
is said to be continuous if it is continuous at every point α ∈ X.

(b) [Bookwork.] Assume that f is continuous and that xn → α in (X, %). We need to
show that for every ε > 0 there exists Nε such that

f(xn) ∈ Bε(f(α)), for all n > Nε. (1)

Since f is continuous, given ε > 0 we can find δ > 0 such that f(Bδ(α)) ⊆
Bε(f(α)). For this δ, since the sequence xn converges to α in (X, %), there exists
a number Nδ such that xn ∈ Bδ(α) for all n > Nδ. Then f(xn) ∈ f(Bδ(α)) ⊆
Bε(f(α)), for n ≥ Nδ; in other words, (??) holds true with Nε = Nδ.

(c) [Bookwork.] Let yn be an arbitrary sequence of elements of f(K). Then yn =
f(xn) where xn ∈ K. Since K is compact, the sequence xn has a subsequence xnk

which converges to a limit α ∈ K. Then by part (b) the subsequence ynk
= f(xnk

)
converges to the limit f(α) ∈ f(K). This proves that f(K) is compact.

[This question continues overleaf . . . ]
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(d) [Unseen.] f−1(L) = {x ∈ X : f(x) ∈ L}. A compact subset is closed, and the
inverse image of a closed set under a continuous function is closed. So f−1(L) is
necessarily closed. However, it is not necessarily bounded: consider the function
f : R → R that is the constant 0. (R has the usual metric.) Then L = {0} is a
compact set, but f−1(L) = R which is not bounded. Because it is not bounded it
is not compact either.

[End of examination paper]


